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SECTION 1
INTRODUCTION

The increasing use of composite materials in  structural applications, such as
automobiles, atrcraft and  space  structures. is  characterized by  their high  strength
(stiffness)-to-weight ratio, low maintenance costs and the flexibility in tailoring the
stiffness and strength to design requirements. As fiber reinforced laminates have
plaved a more important role in high performance structures for the last 2 decades. the
need to have accurate stress and failure analysis become apparent for design or repair
purpose.

Recent development in the analysis of composite laminate coupons under uniform
extension indicated that the high interlaminar stresses near the free-edge are mainly
responsible for delamination failure [1]. Before delamination can be predicted on the
basis of a stress-based failure criterion, it is essential that a highly reliable estimate of
interlaminar stresses be available for the given situation. However, it has been
difficult to obtain solutions for the stress ficld because of the amsotropy as well as
heterogeneity of the material, and the Jdifficulty of sausfying traction-free boundary
condition in a solution procedure based on the displacement formulation.

Considerable research efforts have been devoted to the study of such free-edge
delamination problem. These can be classified as analvtical and numerical approaches.
The analytical solutions are based upon simple elastic approximation [2,3] modified

higher order theory [4], Galerkin method [S], Perturbation technique [6), Boundary laver




theory [7], Reissner's variational principle [8.9], Global-local model [10] etc, while the
numerical solutions are based on finite difference [11,12] and finite element methods
including displacement [13-16], stress [17] and hybrid [18,19] formulations. It was
found that some of the solution techniques were only applicable under certain
conditions. For this reason, a complete stress distribution was usually hard to obtain.
Although results calculated from various approaches have demonstrated similarities in
some cases, discrepancies do eaist in the magnitude as well as sign of the computed
Interlaminar stresses near the free-edge ol Jamimate coupons.  (ne example i1s shown in
Figure (1) in which significant difference was observed for o, stress distribution along
the interface of [45/—45],‘ laminate based on various solution techniques [19].
Apparently. one possible source of these discrepancies is that, in these methods, the
continuity conditions for displacements and tractions across laminate interfaces along
with traction-free boundary condition along free-edges characteristic of the real life
situation, can only be approximated to a limited extent. However, the credibility of
various methods in predicting the o, distribution shown in Figure (1) will be judged
later.

Due to the presence of singular interlaminar stresses near the laminate
free-boundary, edge delamination associated with various types of damage modes, such
as fiber breakage. matny cracking, fiber-matrix debonding, etc., are observed to occur
under incremental Joading. Delamination can be simply interpreted as separation of
laminae from each other in the laminate, and can occur under static, impact or fatigue
loading conditions. For the case of a symmetric laminate under inplane loading, the
strain components are essentially uniform throughout the laminate. Due to the

free-edge effect the out-of-plane interlaminar stresses, however, may be sufficiently
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large to damage the matrix material, which bonds adjcent plies together, and cause
delamination.

Two generic approaches are available for investigating damage modes in composite
materials. The first approach involves a detailed stress analysis used in conjunction
with a failure criterion to predict, and measure experimentally, the onset of fiber
fracture, matrix cracking and delamination. This can be referred to as the strength
characterization approach.  In  the second approach. classical linear elastic f{racture
mechanics can be applied o characterize matriy cracking and the delamination process.
Delamination has usually been isolated from the other damage modes and treated as a
stable crack growth [20-25], and the basic character of the strain energy release rate
has been widely used to predict the Kinematic behavior of delamination. However,
experiments [26] have indicated that delamination usually does not produce a clean
surface between the adjacent plies; instead it is associated with other types of damage
such as matrix cracking and fiber breakage. Thus, use of linear elastic fracture
mechanics approach to study delamination growth seems to be inappropriate.
Meanwhile, due to the irregular occurrence of various damage modes in the form of
different cracking patterns, use of anisotropic strength and failure criteria is apparently
superior to the fracture mechanic approach for the determination of damage
characteristics such as type of failure mode. damage zone and crack growth behavior
including delamination.

The primary objective of the present research was to develop a finite element
model with a sound theoretical background, which could accurately and efficiently
predict the complete stress field of the free-edge stress problem in composite laminates

without resorting to any special singularity elements. The next was to incorporate




various commonly known macroscopic failure criteria into the finite element
computational procedure to evaluate the performance of various criteria on the
determination of onset of matrix cracking and delamination in the composite laminate
specimens under uniform extension. In Section 1lI, a review of analytical and
numerical methods related to the free-edge stress problem is presented. Section 1]
contains the theoretical foundation of the finite element formulation including basic
variational principles.  Section 1V describes a continuous strain finite element model
based on a compatible cubic interpolation function. A continuous tracuon  {inite
element procedure for analvsis of free-edge delamination specimens is developed 1n
Section V. In Section VI, analysis of free-edge effect as well as onset of delamination
in various types of laminated specimens are presented. Section VIl contains discussion
of the proposed finite element models for analysis of free-edge delamination specimens.
Derivation of Felippa's compatible cubic interpolation function is summarized in the

Appendix.




SECTION 11
REVIEW OF EARLIER WORK

2.1 Introduction

The problem of calculuting nterlaminar <tresses near the f{ree-edges of a lavered
composite under uniform inplane extension has been investigated by many researchers.
Most approximate solutions [2-7,10-19] are based upon elasticity theorv and treat the
problem as a generalized plane strain case. This is because first of all, the clussical
and even many of the refined laminate theories, are single-layer theories which do not
account for local effects such as geometric and material discontinuities, and the presence
of a free-edge; secondly, use of discrete layered theory is very uneconomical and
impractical from the computational stand point. An effective modulus formulation [27]
in which each layer is characterized as a homogeneous, anisotropic material has been
widely used [1-19]. A complex state of stress with high gradients has been noticed
(19] in the neighborhood of the free-edge due to the presence of interlaminar stresses to
Keep the luminae in a state of equilibrium. In order to have a precise prediction of
delamination behavior, an accurate estimate for the near-field stress distribution is
essential. However, due to the singular nature of the boundary-layer stress field [19],
an exact solution is currently unavailable, and discrepancies exist in the magnitude and
even the sign of the computed interlaminar stresses near the free-edge (Figure 1) based

on various approximate theories.




22  Analytical Approach

Except for Paganos [8] approximate theory based on Reissner's variational principle
and Pagano and Soni's [10] Global-local model, most analytical solutions discussed in
this section are obtained by using various engineering methods to solve the
displacement-equilibrium equations under certain assumptions. Thus, these can be

regarded as approximate solutions based upon elasticity theory.

2.2.1 Approximate Elasticity Solution

Investigations of the free-edge problem was carried vut by Puppe and Evensen [2]
using a composite model essentially consisting of a set of anisotropic lavers separated
by isotropic adhesive layers. It was assumed that the isotropic layers, developed only
interlaminar shear stresses, acting as an adhesive between the anisotropic lavers. It was
reported that a sharp rise of the interlaminar shear stress could be observed in finite
width Jaminates. However, the simplicity of these elastic formulations precluded
calculation of the transverse normal stress, and the problem became more complicated
when more layers were involved.

In an attempt to approximate the interlaminar normal stress, a simplified formula
was developed bv Pagano and Pipes {1l The strategy was to use solutions along the
Jongitudinal mid-plane of the laminate based upon classical laminated plate theory. one
could then compute the force and moment resultants caused by the interlaminar stresses
on any plane z=constant through consideration of static equilibrium. The maximum
interlaminar normal stress at the free-edge could then be expressed in terms of the
transverse stress in the y-direction calculated from the laminated plate theory.

Another approximate elasticity solution proposed bv Pipes and Pagano [3] was based

upon displacement-equilibrium equations for an anisotropic elastic medium. Assuming




the transverse stresses in the v-, z- directions to vamsh, the equations were written in
terms of the single variable U (axial displacement function). This vielded components
of displacement, strain as well as remaining stress fields in the form of
sinusoidal-hyperbolic series. However, violation of stress equilibrium in the transverse
directions as well as neglect of the interlaminar normal stress constituted major

drawbacks of this scheme.

2.2.2  Modified Higher Order Theory

Paguno [4] derived another approximate method for determination of distribution o
the interlaminar normal  stress along the nmud-plane of a symmetric. finite  width
laminate. The approach was bused upon a modified version of a higher order theorv
proposed by Whitney and Sun [28]. which recognized the effect of shear deformation
through the inplane rotations as well as the thickness strain implemented in the
assumed displacement field. However, like the approximate theories discussed
previously, none of them were able to determine the complete stress field near the

free-edge.

2.2.3 Galerkin's Method

Due to the fact that high stress gradients occurring near the free-edge are difficult
10 estimate by numerical approaches, Wang and Dickson [5] applied the extended
Galerkin’s approach, in which interlaminar stresses and displacements of each laver
satisfying geometrica’ boundary conditions were represented as series of Legendre
polynomials. The final solution was reached by requiring the satisfaction of continuity
conditions at each interface as well as stress boundary conditions at exterior planes.
Due to 1t} completeness of legendre polynomials, convergence of solutions could be

expected.



2.2.4 Perturbation Technique

In an effort to obtain more accurate f[ree-edge stress intensities, a perturbation
technique was applied by Hsu and Herakovich [6] to solve the three coupled
dimensionless partial differential equations based upon a displacement formulation of
the elastic problem. It showed that the perturbation solution provided a smooth
continuous stress distribution in the vicinity of the free-edge. However, this solution
had the limitation that the shear stress distribution was a function of both laminate
thickness-to-width ratio and a problem-dependent parameter.  Although the latter could
be chosen such that the maximum values of shear stress field did not exceed elastic

limits, the accuracy of the calculated stresses was suspect.

2.2.5 Boundary Layer Theory

A boundary layer theory for laminated composites in plane stress was developed
by Tang and Levy [7] from the three-dimensional theory of anisotropic elasticity. By
expanding the stresses, displacements, body forces and surface tractions in power series
of the half-thickness of a lamina in the equations of equilibrium, compatibility and
boundary conditions, a sequence of systems of equations was obtained. The complete
solution was obtained by combining solutions of the interior domain based on the
classical  lamination theory and those from boundary laver and matching a set of
appropriate boundary conditions. This formulation indeed provided a way to obtain
analytical solution for estimating interlaminar normal as well as shear stress

distribution.




22.6 Reissner's Variational Principle

In order to have displacement as well as stress continuity, a mixed formulation is
sometimes used. Unlike the elastic approximations discussed previously, Pagano (8]
developed an approximate theory for a general composite laminate based upon an
application of Reissner's variational principle. In this theory, the inplane stresses are
considered linear in the thickness coordinate while the transverse stresses derived from
equilibrium consideration are cubic. If a laminate or a single lamina is viewed as an
assembly of N sheets, each having a finite thickness and required to satisfy force and
moment equilibrium, the analysis led to a set of 23N algebraic and ordinary
differential equations which had to be solved simultaneously. Based upon the
assumption that the stress field is independent of the longitudinal axis, Pagano [9]
further specialized the theory to the free-edge problem by reducing the stress field
determination to the solution of a one-dimensional problem. Despite the relative
accuracy of this theory resulting from the improvement of smoothness for both
displacement and traction fields at interfaces between adjacent layers, a major drawback

was that its application was limited at most to six sublayers.

22.7 Global-local Model

Pagano [10] introduced a global-local model, which was able to define detailed
response functions in a particular, predetermined region of interest while representing
the remainder of the domain by effective properties, that reduced the number of
variables in a given problem. In this model, for the global region of the laminate,
potential energy has been utilized, and the displacement components were based upon
the assumption given by Whitney and Sun [28] The Reissner variational principle

described in [8], however, was applied for the local region in which a thickness
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distribution of stress tield satisfyving equilibrium equation within each laver was
assumed. A vauriational principle was then used to derive the governing equations of
equilibrium for the whole system. It was reported that the global-local modet could
effectively solve the same class of free-edge stress problem as described in {8] and had

wider range of applicability.

2.3 Finite Differcnce Method

2.3.1  Pesudo Two-dimensional Analysis

Pipes and Pagano [11]) used the classical theory ol linear elasticity to formulate the
problem of free-edge delamination of a stnp under umtorm axial strain.  Allowing for
material symmetries and uniform extension, the transverse components of displacement
were assumed to be independent of the longitudinal coordinate. The three coupled
elliptic equations for the displacement functions were solved using a finite difference
solution technique to approximate the interlaminar stresses. Delamination was assumed
to be primarily due to the high shear stress near the free-edge and the interlaminar
stress field was found to be an edge effect which was restricted to a boundary region

approximately equal to the laminate thickness.

232 Three-dimensional Analysis

A three-dimensional finite difference analyvsis was carried out by Altus, Rotem and
Shmueli [12] to examine the free-edge stress field. The displacement equilibrium
equation was solved by using central difference method while for displacement or
traction-free boundary conditions as well as interfacial continuity conditions, either

forward or backward difference scheme was applied. Convergence of the solution was
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expected providing a reasonable displacement tield was assumed inually.  Although o
complete stress [ield was available due to three-dimensional characteristics, an iteration

scheme could be a serious inconvenience.

2.4  Finite Element Method
In order to more effectivelv evaluate the high gradient stress field at the free-edge
of laminated <omposites, the popular finite element method has been applied by

numerous invest igill\)TS.

2.4.1  Displacement Method

Wang and Crossman [13) used a very f{ine, constant strain triangular element prid
to model the laminate boundary region through a cross-section. The {unctional
dependence of the assumed displacement field was of the same type as in Pipes and
Pagano’s analysis [11] To overcome the difficulty of computational storage and time
limitation, the solution process adopted the so-called “sky-line” matrix storage scheme.
The results indicated that the interlaminar as well as inplane stress singular behavior
was highly localized in angle-ply laminated composite. A simplified method for
calculating interlaminar stress was proposed [14] wherein the stresses at the desired
layer-interface were evaluated by substructuring the laminate with fewer number of
effective layers. This reduced the number of laminar interfaces and facilitated 1imite
element calculation within fewer elements.

A quasi-three-dimensional finite element analyvsis was carried out by Raju and
Crew [15] using eight-noded isoparametric elements. In order to approximate the stress
singularities, polar mesh was introduced near the intersection of interface and free-edge,

associated with a so-called log-linear procedure to relate the steep gradient stress with
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the radial distance from the singular point in the logarithmic coordinate. One major
drawback of this scheme is that the power of singularity has to be determined by
solutions calculated from finer polar mesh near the interface of the free-edge.

Whitcomb, Raju and Goree [16] further pointed out that the disagreement for both
magnitude and sign of the interlaminar normal stress distribution among various
numerical methods could be attributed to the unsymmetric stress tensor at the
singularity. In their approach too, the problem was modeled by eight-noded
isoparametric elements. It was concluded that finite element displacement models were
capable of giving accurate stress distributions everywhere except in the region within
two elements of a stress singularity.

In summary, we observe that in the conventional displacement-based finite element
formulation, evaluation of shear as well as normal stresses required expensive mesh
refinement near the boundary region to approximate the singular stress field. Even
then the actual stress distribution along the free-edge was generally not sufficiently

accurate.

242 Stress Method

Rybicki [17] used a three-dimensional equilibrium finite element analysis procedure,
based upon minimization of complementary energy, to solve the free-edge stress
problem. Due to the fact that the assumed stress state in the analysis did not contain
singular term, a finite rise in interlaminar normal and shear stresses near the interface
corner was observed for angle-ply layup. However, this method involved very large
matrices and was computationally expensive, and even at that did not yield a

continuous stress field.
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24.3 Hybrid Assumed Stress Model

In Pian's hvbrid model [29]. stress equilibrium in the interior of the elements as
well as displacement continuity along interelement boundaries are ensured, but the
interelement stress continuity is satisfied only in a weighted integral sense. Following
Pian's formulation, Spilker {18} developed a special hybrid element for the edge-stress
problem. In his work, the assumed stress field was made to satiefy exactly the
continuity  of  traction  across interluver boundaries as well as tracton-free conditions
along exterior planes of the laminate.  This was found to be effective for study of
cross-ply laminates having a relatively simple stress field. it s difficult 1o extend this
procedure o angle-plv laminates because in these the complete stress field has o be
considered.

A special formulation of a singular composite-edge element was develope¢ by
Wang and Yuan {19] based on the Boundarv ' ~er theorv [30] and the variational
principle of a modified hybrid functicnal. In the analysis, the singular hybrid element
was used in conjunction with displacement-based eight-noded isoparametric elements, and
it was reported to give satisfactory stress distribution near the free-edge. This method
is excellent for determining possible growth of delamination but would be awkward to
use to predict occurrence of delamination in an intact specimen. This is because

sometimes. 1t 15 hard to find the nlace in which stress singularity may occur.

2.5 Summary and Research Motivation

The analytical and numerical solutions discussed above for the free-edge stress

problem are summarized in Table (1). Some conclusions can be made at this point.
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Generally  speaking, un analvtical solution tor the complete stress field is
extremely difficult.  The solution procedure for the case of a multi-laver
system is not currently available.

Use of a finite difference technique suffers from geometric limitations.
Calculation of stresses at the interfaces or laminate boundaries needs to apply
additional techniques. such as iteration scheme. Even then the solution
generally lacks credibility.

Conventionul  displacement based  linite  element  methods  are  incapable  of
predicting uaccurate stress Delds particularly along element boundaries.  Stress
equilibrium approach is appuarently impractical.  Use of hybrid element does
improve stress calculation but s applicable only to some special cases.
Application of singular element near the free-edge boundary apparently makes
the analysis too subjective. In order to have rehable predictions of
displacement and stress fields, it is necessary that the free-edge stress model be
able to approximate the real life situation as closely as possible. In other
words, the displacement and stress continuity conditions along with
traction-free boundary condition have to be exactly satisfied. Considering a'so
the generality and effectiveness of the analvsis, the displacement-based finite
element approach with higher order interpolation function could conceivably be

superior to the other approximate theories.
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SECTION 1INl
VARIATIONAL FORMULATION AND FINITE
ELEMENT APPROXIMATION IN LINEAR ELASTICITY

3.1  Introduction

In this section, a variational formulation of three-dimensional elasticity 1s described
and its use as the basis of a finite element approximation is discussed. The treatment
essentially follows that in reference [31]  Variatonal formulation has been used as the
basis for direct methods of obtaining approximate solutions to boundary value and
initial boundary value problems. Traditionally, the approximation space is generated by
complete orthonormal sets comsisting of eigenfunctions of self-adjoint operators. The
functions which are used to approximate the field variables are required 10 satisfy
certain continuity requirements over the whole domain. The finite element method,
however, offers an alternative route for generating the sequence of finite dimensional
approximation spaces. The region under consideration is subdivided into a finite
number of discrete elements, and the field variables are represented by [unctions which
follow the sume continuity condition only piecewise within each element.  Some
significant differences between the finite element method and the traditional direct

methods include [31]

1. The base functions have local support and are nonorthogonal.
2. The sequence of approximation spaces is ordered by refinement
3. The local support functions mayv have only limited smoothness
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‘The support of each base function is confined to the neighborhood of & nodal
point and extends over the elements of the finite element approximation sharing that
point.  Across interelement boundaries within the support and at the boundarv of the
support, the function may have only limited smoothness. In a sequence of refinements,
additional nodal points, elements and base functions are introduced. The base functions
associated  with each nodal point change with refinement, including a monotonic
decrease 1n support.  Additional discontinuities might be introduced at eiach refinement.
Variational formulations and solution procedure for direct methods hased on the e
element approach must allow for these pecuharities of finite element approximation

spaces.

32 Boundary Value Problem
Consider an open connected rtegion R in an euclidean space. @R is the boundary

of R and R its closure. A typical boundary value problem on R is defined by the set
of equations

Au=f on R (1)

Cu=¢ on @R (2)
where A is the field operator and C is the boundary operator such that

A:D -V, (3

C:”(w"’van (4)
Vg, Vye are linear vector spaces whose elements are defined on the regions indicated

by the subscripts. Dy, Dy, are dense subsets in Vi, V,, and denote the domains of A,

8R?
C respectively. D, is the extension of D, ie. any element u€Dg has a unique

extension in Dy, and every element in ), is the extension of an element (not
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necessarily unique) in Dg. For given f€V,, g€V,, the boundary value problem
consists of determining u€Dg along with its extension in Dy such that (1) and (2) are

satisfied.

3.3 A Variational Principle
Let the linear operator A be self-adjoint, ie. there exists a nondegenerate, linear
Gateaux differentiable, bilinear mapping B, :D xXV,—S, where S is a linear vector space,
such that
BR(u,Av)=BR(v,Au)+CaR(V,u) u,v €D NV, (5
Here, Cy(v,u) are quantities associated with the boundary gR. Magri [32] has shown
that such a bilinear mapping can be constructed for every linear operator A. If the
boundary operator C is consistent [33] with the field operator A, ie., there exists a
nondegenerate, linear Gateaux differentiable, bilinear mapping By :Dg3pXV =S, such that
Copviw) =B (v,Cu) =B (u,Cv) (6)

then, the linear Gateaux differential of

Q(u) = Bp(u,Au—2f) + B (u,Cu—2g) n

vanishes if and only if (1), (2) are satisfied. Sandhu and Salaam [33] further pointed
out that even if the boundary condition is homogeneous, ie. g = 0, the quantity
B,x(u,Cu) in (7) must be included if the variational principle is to hold for the path
of Gateaux differentiation not satisfying homogeneous boundary conditions. This is
important for approximation in finite element spaces where the variation is introduc'ed
as change in the nodal point value of the field variable and, consequently, the path of

variation may not satisfy the boundary condition or internal smoothness.
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3.4 Variational Principle for Finite Element Approximation
In the finite element method, the region R is approximated by a set of elements
{R_; e=12,...m} such that
R, NR =0 if exf (8)

m
lim | JR =R (9)
=1

m—o

The field varwbles are approvimated by functions which mav not be sufficiently
smooth,  However. over each element, adeguate smoothness is assured.  If R represents
the interior ol the e-th element and gR 1t boundary. we have [34]

BR'( u,Av) = likb(\',A u)+ (‘ak‘(\‘,u) (10)

and

CaRe(v’U) = BaRe(v,Cu) - Bake(“’CV) (1

Further define

Qu)= Z[BR (u,Au—2f) + Ba

e=1

maRe(u,(?u—2g)] + Baki(u.(Cu)') (12)

where R, represents interior boundaries of elements and a prime denotes a jump. The

Gateaun differential

8,0 =2 FIB, vAu=+ By (G Cu=p)l 2B (v(Cu) (13)
e=1 ¢
vanishes if and only if (1), (2) are satisfied over each element and (Cu) vanishes, i.e.

Cu is continuous across interelement boundaries. If there are actual discontinuities in

the interior of R, let

(Cu)' =g" over gR' (14)
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where g is specified over gR. Then, if the union of intersection of element

boundaries covers R, the functional in (12) may be redefined as

Q)= Z[BR (u,Au—2f)+B

e=1

RN aRe(u,Cu -2¢)] + BaR‘, (u(Cu)'—-2g") 1%)

3.5 Linear Operator with Adjoint Splitting

Many physical problems can be written in the form of

Au=Tu+TETu=f on R (16)
Where

F:W, ~V, (17)

T: W, =X, (18)

E:X,~Y, (19)

T:Y ~V, (20)

T is the adjoint of T, ie. By, By such that

B (u,Tv) = BR(V,T‘U) + Can(v'“) (21)
Here Bg:WgxX,—S and By :W XxV,.—S. S is a linear vector space and B, B, are
continuous non-degenerate bilinear mappings. L, I are svmmetric, ie.

B (u,Lv) =B, (v,l'u) (22)

B (u,Fv) = B.(v,Fu) (23)

Introducing €, o through the equations
Tu—e€=0 on R (24)
Ee—0 =0 on R (25)

(16) can be written as
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Fu+To=f on R (26)

Combining (24) through (26), these constitute the coupled system

FoT|u |f |
0 E -1/ {e{=10 on R Q7N
T -1 0jjo}] O

If the inverse of I exists, let G=E'. Then, combining (24), (25)
Tu—Go =0 on R (28)
(26) and (28) are the woupled system

ol e

T -G

— t‘

0'_()

l on R (29)

(29) is referred to as the complementary form.
For an operator with adjoint splitting, let the boundary conditions on u, o be

Cu=g, on S, R (30)

1
C,o=g, on S, QR (31)

The discontinuity conditions are

(Cuw'=g, on§ (32)

1

’ ’ 1
(C,o) =g, on S, (33)
where §, and S, are interior surfaces imbedded in the intersection of finite element

boundaries. C,, C, consistent with T, T' implies the existence of bilinear mapping

Bs!, Bs, such that
B, (u,Tv)=B, (v;Tu)+B Lv.C,u)—B _(uCv) (34)
(] e 82 S1

where S;, S are complementary subsets of boundary @R, of element e.
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The function governing variational formulation of (27) for finite element

approximation is

m
Qo) = ¥ [B, (wFu+To-20) + By (eEe—0) + By (c.Tu—€) + B,  (0.C,u=2g))]
ex]
+ [BaRensz(u'CzU_Zgz)] + Bil(a,(Clu)'—2g'l) + B;(u,(CZO')'—2g'2) (35)

It is important to note that even if there are no interior discontinuities in the
physical problem or the specified boundary conditions are homogeneous, the bhoundary
and the discontinuity terms must be included to accommaodate the nature of the finite

element approximation space [32]

3.6 Principle of Minimum Potential Energy
The field equations for isothermal quasi-static deformation of anisotropic, linear
elastic solids, assuming no initial stresses and strains, are:
a) Equilibrium of stresses
i_“+fj=0 on R (36)
b) Kinematics

For small deformation, the strain-displacement relationship is

u =€ on R (37
1y) 1)

¢) Constitutive relations

o =E € (38)

1) 1jk} k!
on an open bounded connected set R contained in the three-dimensional Euclidean space
E. Here u, f, €, o, E,, are, respectively, the components of the displacement vector,

the body force vector, the infinitesimal strain tensor, the symmetric Cauchy stress

tensor and the isothermal elasticity tensor. The range of indices is 1, 2, 3 and
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summation on repeated indices is implied. A subscript following a comma denotes
partial differentiation with respect to the coordinate, in the reference frame, defined by
the subscript. Parantheses around subscripts denote the symmetric part of the quantity.

Let the functions u, €, o, satisfy the continuity and differentiability properties

ij?
required in the equations of elasticity over every subregion R,. Then, admitting

(u.l,eu.,(rij) as the 15-tuple of dependent wvariables, components of vectors and tensors

being regarded as ordered subsets in an n-tuple, (36){38) can be written as [33]

A 04,5 O
0 0 (Sm Y Jk_ai) wl
0 E -1 €,i=10f on R (39)
1 a 3 o, 0
(8k| al 11 ak ) 1 0 J

Consistent boundary conditinas for the problem are

—nu,=-nq, on S, (40)

(41)
where the n; are components of a unit normal to the boundary S, and the jump

conditions are

(op)=g, on Siz (42)

—(nu)=-¢g,, on Sil (43)
Setting up the problem in inner product space, ie. Bglu,v)= f uvdR, and defining
R

B (u,v) = ZBR(u,v)Ro (44)

e=1

The basic functional corresponding to (35), allowing for relaxed continuity, is [33]

Q (u €T )= f (e”Elel YT Zeljolj—2uf +u, 4 )dR
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+ fszuj(crijni—iltj)ds— fSloijnJ(ui—2ﬁi)dS+f uj(((run,) —2g’,)dS

i
S2

-[ ) =2, )as (45)

In using (45) as the basis for finite element approximations, it is not necessary for the
interpolants to satisfy any boundary conditions or interelement continuity. For no

jump discontinuities, g',, and g’, vanish. However, it is important to retain the terms

containing (o, n), (nyu,)" in the formulation.

Using symmetry property of the operator matrix, ie.

O'.leR=—f (r..u..dR+fomnu,dS+f o (nu)dS
T g k) g W T

i
Sl

R

+ [ ufo,n)ds (46)

5

to eliminate the term containing o, . from (45), the functional can be written as

13,

Q 2(ui,ek,,O'U.) = f ReijEUkleHdR +2 Rcrij(ui'j—e.u.)dR -2 f RuifidR

—2f ut.dS—2f oA.n,(ui—ﬁ)dS—2f o (nu)dsS 47
S211 sllj_] i Si‘ujx

1, is the modified variational principle with three independent fields proposed by
Prager [35]. If u, €, are restricted to satisfy the last of (39), the strain-displacement

relations, Prager's modified principle of total energy theory is obtained

0,= [ €, qR~2 ufdR=2 [ utgs—2 [ on(-ays
J ikl Tkl [y i [T ] i
R R S, S,

-2 Si‘aij(njui)'ds (48)
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(48) was also proposed by Pian and ‘Tong [29] and is the basis of their hybrid method
with assumed displacement field. If the displacement field, u, is further restricted to

satisfy the displacement boundary condition (40) on S, Q, reduces to

Q,= f 1 ukl €, dR— 2fodR 2f u tdS— 2f O’(nu)dS (49)

If the finite element interpolations are chosen to identically satisfy displacement

continuity across S, the Jlast term in Q, vanished and (49) becomes

O, = f € dR = 2f ufdl\—?.f u tds (50)

The vanishing of the variation of Qg with respect to the displacement components u,

implies the satisfaction of equilibrium equations (36). This functional corresponds to
the classical principle of minimum potential energy which is customarily used as the

basis of the finite element displacement formulation of the elastostatics problems.

3.7 Assumed Displacement Finite Element Formulation
For the boundary value problem stated in (1) and (2), the solutions u to the

forcing functions f in general belong to L, the space of square integrable function. L,
is a separable Hilbert space. However, u may be contained in a subset D of L, such
that A, the linear operator, is defined on D. We assume that D is dense in L, If
the set of functions {¢,, k=12,...00} is a basis in D, then any function u€l., can be

expressed as an infinite sum:

= Zak¢k (51)
k=1
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A scheme to generate approximate solutions is to use a finite set of terms in the

infinite sum above. Thus, as an approximation
n
u=Yad, (52)
k=1

The approximation process consists of an appropriate choice of n, ¢, and the coefficient
a,. Several alternative procedures are available. The finite element method is a
special process of selection of finite subset of the basis {¢,}. The coefficients a, are
generally evaluated by requiring the approximate solution to satisfy a wvariational
principle.

The finite element idealization essentially partitions the spatial region R into a
finite number of nontrival discrete elements or subregions. The geometry of the

elements is defined by a set of points in space called the nodal points of the system.

Over an element m, let an approximation to u be u; such that
n
m __ m
u, = Z 2, ¢, (53)
k=1

or in matrix form, dropping the subscript n,

u™ = {@"} 2™ (54)
where {#™}" is a row vector consisting of ¢ as its elements and {a™} is a column
vector of coefficients a;. Evaluating the function, and its derivatives up to a certain

order at nodal points, yields
" =@M "™ (55)
where {u"} is the vector of nodal point values of the function and its derivatives up

to the order selected, and [@["]" is the matrix of base functions evaluated at each nodal
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point. The rows and columns of [¢f“]T are linearly independent. If square, the matrix

is invertible. Hence, we can write
@™ =" ™ =[A]" fu"} (56)
where A=[3"]

Substituting (56) into (54)
u" =[g"T (A" fu" =[¢"]" u") (57

where [¢"] can now be regarded as a set of interpolation functions relating nodal point
values of a function and its derivatives up to a preselected order, to the value at an
arbitrary point within the element m [36].

In applying the potential energy functional shown in (50), €; is assumed to satisfy
the strain-displacement relationship, and the displacement field should satisfy the
prescribed displacement boundary condition on S,. Vanishing of the variation would
imply satisfaction of the equilibrium equations. As stated previously, in the finite
element method, the displacement u is approximated by interpolation functions and
generalized displacements at a finite number of nodal points of each element. The
interpolation function must be chosen in such a way that when the nodal point
displacements for two adjacent elements are compatible, the displacements along the
common boundary are compatible. Meanwhile, the interpolation function must also
satisfy the requirement that the first derivatives of the displacement field exist.

Based on (57), the assumed displacement over an element can be rewritten in

matrix form as

W™ =lpiprT (58)

m

q
m

T
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where q™ is the column matrix of generalized displacements at boundary nodes of
element m which determines the inter-element continuity, and r™ is the column matrix
of generalized displacements at nodal points either at the boundary or at the interior
of element m but which do not affect the interelement continuity requirements. The

corresponding strain distribution is
lg"
my _f,m;  m
{e") =lpnig?] H (59)

where ¢ and ¢ are obtained by differentiating ¢7 and ¢ with respect to the
spatial coordinates. Substituting (59) into (50) and expressing in the finite <lement

discretized form, we have [37]

M
_ q
o= [, [

-2 f d
S,NaR T

T T
[emiemlEm i [TieT ey aR ,

q
T

ar,~2 [
Rm

T
[$7167 17 T (e} dR | (60)

where

[E™E matrix of elastic constants for element m
[#" matrix of interpolation functions for the
body forces in element m
[¢:"]== matrix of interpolation functions for the
prescribed tractions on the surface S of element m

The summation sign in (60) implies the direct stiffness assembly procedure, and the

is the vector of global displacements. 2, can also be written as

vector ,q
T

M
0 = ¥ dg"VIK g™ + 2 6r"VIK ) 4q™ + VIR HE™)

m=1

—2AF71 (g™ = 207D (61)
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where

K= [  PLIE N4 Tar, (62)
K, = f Rm[¢$][5m][¢f;]TdRm (63)
K, = f Rm[qu;][E"'][d>,f,“r]Tc1Rm (64)
F = f Rm[¢'q"][¢}"]T{f"‘}dRm+ f g,ns“,w):'ud):lr{tm}dS’“ (65)
F = f Rm[¢;_"1[¢;“ﬂr"'}dRm + f S}ﬂsml¢;"1[¢{"1"<t'“}dsm (66)

The displacements {r"} in element m are independent of displacements, {r'}, for i=m.

The stationarity condition with respect to their variations yields
[KEHa "+ KPHE™ = {FT) =0 _ (67)
Solving (67) for {r"} yields
my _ fpymy! m m m
=K AR - K g™ (68)
Substituting (68) into (61) yields
M
a,= Y (g™ K™ g™ —{F"}{q™} +C,) (69)
m=1
where [K™] and {F"} are, respectively, the element stiffness matrix and the equivalent

nodal forces defined by

K™= (K] - [K KT K] (70)
{F™} = (PP} — KK DT (F7) (71)
C.= -—{F:"} [K:TI{F:"} = constant (72)
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Q, in (69) is given in terms of the generalized displacements {q} which are not

independent for different elements. Using global coordinates, (69) can be written as
0, ={g}Klg} —2 (g} (R} +C'| (73)

Taking the variation of this discretized form of the functional yields the system of
algebraic equations

[K]{q} = {F} (714)
which can be solved for the unknown nodal displacement {q}. The matrix [K] is
positive definite, symmetric and banded. The process of eliminating the generalized
coordinates, {r}, from each element is called the static-condensation process [38]. The
introduction of these terms, which do not interfere with interelement compatibility,
results in an improvement in the satisfaction of the equilibrium equations within each
element. However, the satisfaction of the equilibrium equations along the interelement
boundary is still governed by the degrees of compatibility supplied by the interpolation
functions for the generalized displacements, {q}. The solution obtained represents an

underestimate of the true solution in the sense of energy [39]
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SECTION 1V
CONTINUOUS STRAIN FINITE ELEMENT
INTERPOLATION

4.1 Introduction

In the [finite element method, the displacement  field 1s  approximated by
interpolation functions and generalized displacements at a {inte number of nodal points
which also deline the geometry of the elements. 'To ensure continuous strain across
interelement boundaries, it is sufficient that the interpolation functions be such that
the displacement components as well as their first derivatives along the common
boundary are continuous.

Tocher and Hartz [40] pointed out that for plate bending analysis, continuity of
slopes of the plate displacement surface is necessary. The compatible cubic interpolation
functions developed by Tocher [40] and by Clough and Felippa [41], among others,
satisfy this requirement. For plate bending, the generalized displacements used were w,
the transverse displacement of the plate and i1ts derivatives w, w,. llere, the
subscripts x or y denote partial differentiation with respect to the independent
variables x, y. Applying the same displacement interpolation scheme to the plane
elasticity  problems  [40), the corresponding  generalized  displacements  were

U, U, U, V, V, vV,

the in-plane displacements and their first derivatives at each node.

Thus, continuity of strain between adjacent elements was ensured.
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Instead of using a local Cartesian coordinate system in the derivation of the cubic
polvnomial with nine coefficients for each displacement component in Tocher and
Hartz’s  work, triangular coordinates were wused in the present fully compatible
quadrilateral element, following Felippa's [42] work on plate bending analysis. This
simplified the generation of various matrix relationships for the constituent triangular
elements. Tocher's {40] element used incomplete cubic polynomials. Felippa's elements
were based on complete cubic polynomiuals and were therelore selected for application to
the free-edpge problems.  FThese elements include Tochers formulation as speciahzation.
Cubic expansion ol the 9-degree-of freedom conformimg wiangular element (LCCT-9) for
both 1n plane displucement components as  used by Tocher [40] was extended o
quadrilateral element designated (-15. Quadrilateral  elements, Q-19 and Q-23,
assembled from LCCT-11 and LCCT-12 triangular elements introduced by Felippa {42],
were also redeveloped for the plane elasticity problems. The continuous strain elements
were used to analyze a pseudo two-dimensional free-edge stress problem similar to that

of Pipes and Pagano [11] for composite laminate coupons under uniform extension.

4.2 Interpolation Functions of Continuous Strain Elements

In the following. Fehppa's [4142] approach for deriving the plate bending
interpolation functions is summarized.  MWe use the same element name as Felippa's and
start with u instead of w for the plane elasticity problems. Similar derivations

applied to the displacement component V.
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4.2.1 LCCT-12 Element

A complete cubic polvnomial 1n two vuriables s defined by ten independent
coefficients.  The values of u, the »-direction displacement of the plane stress body and
its derivatives u_, u, at the three vertices of a triangle yields nine independent
quantities. To ensure continuity of derivative u_ across element boundaries, it is
necessary that u_ be Known at some points other than the vertices along each of the
three edges. Tt as convenient to mtroduce mid side nodes on each of the three edyes.
This element then has twelhve dependent quantities against the minimum of ten
needed to completely define a cubic polynomial.

In order 1o use a cubic polvnomial with continuous first derivatives in the interior
as well us on the element boundaries, l'elippa proposed that the element be made up of
three subtriangles as illustrated in Figure (2). FEach subtriangle has three vertices and
one mid-side node to supply the ten independent quantities for defining the cubic
polynomial interpolation in its interior. The point (O could be any interior point.
However, for simplicity of formulation, the centroid is generally used [41]

The nodal displacement degrees of freedom to be considered in the stiffness matrix
of the complete element (Figure 2) include the values of the in-plane displacement

vV

’
A N

components, u,, v along with their first derivatives u_, u
!

i

Vo (3=1.2,3) aboui the

N and v axes at each corner as well as the normal slopes at the three mid-side nodes

about axes perpendicular to these sides respectively, viz. u_, u and v, V..V

ng ng® unbv ng ng'
After forming the expression of the cubic displacement patterns in the three
subelements, because of the common displacements imposed at the nodes, the in-plane
displacements of two adjacent subelements are identical along their juncture line. To
establish continuitv of u,_ along the edges of the subelements, it is sufficient that u

n
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Figure 2: Assembly of the LCCT-12 Plane Elasticity Element
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evaluated at points 7. 8, Y, mud-points of these edges. 1om adjacent subtriangles be the
sume. These three condiuons were used to evaluate the in-plane displacement u, and
1ts derivauives u, u, at the interior point (). With the interior point thus condensed
out, Felippa [41] obtained a set of interpolation functions for the LCCT-12 element.
These define a piecewise cubic polynomial interpolation such that the in-plane
displacements and their first derivatives are continuous both in the interior of the
elenient and along the entire boundary ol the cemplete triangular element. A more
detailed dermvation  procedure  and  the complete Iisting  of  the cubic interpolation

functions are piven in Appendix.

4.2.2 LCCT-11 and LCCT-9 Elements

Assembly of three subtriangles results in the 1.CCT-12 element (Vigure 3a).
However, the mid-side nodal points in this element are not desirable for programming.
They complicate the mesh generation procedure, increase the band-width of the
assembled equation systems, and require special identification in calculation of the
stiffness matrix. To overcome these difficulties, it may be desirable to develop a
special element without external midpoints. This can be accomplished by assuming the
normal slope to vary linearly along one or more sides [42].

With the elimination of oﬁe mid-side node, the five-node element 1s designated as
LCCT-11 (Figure 3b).  Further imposing linear slope variation constraints on three sides
gives a triangle with three nodal points and results in LCCT-9 element as illustrated

in Figure 3(c). The L.CCT-9 element is identical to the Tocher and Hartz [40] element.
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Figure 3

(a) LCCT-12

(b) 1L.CCT-11

Compatible Triangular Elements

(¢) LCCT-9
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4.2.3 Quadrilateral Elements

Llements of quadrilateral shape can be set up as assemblages of triangular
elements.  ligure (4) shows quadrilateral elements built up from four 1.CCI-12.
LCCT-11 and LCCT-9 elements. The quadrilateral element in Figure 4(a) has a total
of 23 degrees of freedom for each variable and was designated by Felippa as Q-23.
Using four LOCCT-11 or LLCCT-9 triangles, the (-19 and Q-15 elements as shown in
Figuras (bl 3e) respectivelv are realized.

The quadrilateral element has intennor nodal  points not connected 10 the other
guadrilateral element in a [inite element mesh. These points can be eliminated through
a local condensation process.  ‘Thus, the final quadrilateral element has 24 degrees of
freedom, corresponding to the two in-plane displacement components and their first
derivatives with respect to spatial coordinates x and y at the four corners of the
elements and an ~dditional eight degrees of freedom corresponding to the normal
derivatives of each of the displacement components at the mid-side nodes. Assuming
that the normal derivatives vary linearly along the edges of the quadrilateral, the
mid-side nodes can be dropped. This reduces the Q-23 to Felippa's Q-19 element with
12 degrees of freedom for each of the displacement components. It is a fully
compatible quadrilateral element, having u continuous cubic variation of displacement
and quadratic variation of strain both in the interior of the element and along the
entire boundary of the element, as well as a linear variation of normal slope along all
external edges. We note however that LCCT-9 and LCCT-11 do not use a complete
cubic polynomial. For this reason, Felippa’s 1LCCT-12 element based on complete cubic

interpolation was considered an improvement upon Tocher's [40] LCCT-9.
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Figure 4:

 }

(a) Q-23 (b) Q-19 (c) Q-15

Quadrilateral Elements formed from (a) LCCT-12 (b) 1.CCT-11 (¢)
1.CCT-9

A9




43 Application to the Free-Edge Stress Problem

Figure (5) shows a syvmmetric laminated composite coupon under a state of
uniform axial strain. In this case, away from the ends, the transverse Xx=constunt
plane displacement fields can be assumed to be independent of x. These assumptions
imply the following form for the three components of displacement [11].

ul(x.v,2) = ex+ Uly,2)
vinvz) = \Vivey) (75)

wiyvs)=Wivy)
where ¢ 15 the untform i plane strion i the s-direction and u, v, W are components

of displucement along x, v and 7 axes vespectively.
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4.3.1 Finite Element Formulation
The constututive relationship  for  linear elasuic  anisotropic  material obeys the
generalized Hooke's law
o=Cg 1j=12..6 (76)
where €, is namely the uniform extensional strain e, Based upon the minimum
potential energv principle (50) and substituting various interpolation functions for
displicement. bodv force and traction tields appeering in the governing functional (60),

a nodal force-displacement relation awaithin eoch element s expressed as

where R represents the resultant esternal nodal force, K, is the element stiffness

matrix which can be written as

K. = B C BdV mn=12,..6 (78)
v

1j itn Tmmn nj

The range of i, j depends upon the ‘degree of freedom’' of the element, B is the
displacement transformation matrix and V is the domain of the element.

Because of the longitudinal extensional strain is specified as constant, the
corresponding term in the stiffness matrix can be separated from the rest and (78)
rewritten as

l\'”u_'zl{l—R‘l' (79)
where the range of summation on m, n is now 2, 3, ... 6 and R’ is the element

residual force due to uniform in-plane strain e, ie.

ml o

R'= [ B,C,edV (80)
v




After lorming the system stiffness matrix and nodal force vectors, the displacement
components can be obtained by solving the resulting set of linear equations in the

standard manner.

432 Higher Order Elements

For the free-edge stress problem, due to the fact that dependence of the
longitudinal displacement on the longitudinal coordinate x is made explicit, the three
displocement components are completely defined by three functions of two independent
transverse coordmates voound 7z oas shown in (750 Thus. the compatible  cubn
interpolation functions used oy plane elasticity problems cun be extended to the pseudo
two-dimensional model of & laminate coupon. and a continuous strauin field along both
in-plane and transverse directions ensured.

Figure (6) shows the nodal displacement degrees of freedom considered in the
stiffness matrix for the complete triangular element. These included the values of the
in-plane displacement components u, v, the transverse displacement w, along with the
first deriviatives Uy, U, ViV, W, W, about the vy and z axes at each corners i=1,2,3

as  well as the normal slopes at  the three mid-side nodes, viz.

Upp Uy U o Vs Vs v o w oow w0 This is the LCCT-12 element but with total

ng Ungs Yo Map Vg Ve Wip Wae Wy
of 36 degrees of freedom. Further assuming the normal slope to vary lineariv along
one or all three sides, the 1.LCCT-11 and LCCT-9 elements, with total of 33 and 27
degrees of freedom respectively, are obtained as specializations.

As described for plane elasticity, quadrilateral elements, designated as Q-23, Q-19
and Q-15, were set up as assemblage of four 1.CCT-12, LCCT-11 and LCCT-9
respectively.  After eliminating the interior nodal points through a local condensation

process, the final quadrilateral element, Q 23, had 36 degrees of freedom, corresponding
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Figure 6: Free-Edge Stress I.CCT-12 Element
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to the three displacement components and their first derivatives with respect to the
spatial coordinates v and 2z at the four corners of the element and an additional 12
degrees of freedom corresponding to the normal derivative of each of the displacement
components at the mid-side nodes. It is a fully compatible quadrilateral element,
having a continuous cubic variation of displacement and quadratic variation of strain
not only within the elements as well as along element boundaries, but also across

laminate interfaces.




SECTION V
CONTINUOUS TRACTION FINITE ELEMENT
PROCEDURE FOR COMPOSITE LAMINATES

5.1  Introduction

In the continuous strain Q-23 element developed for the free-edge stress problem,
both displacement and strain are continuous along interelement as well a8 interlaminar
boundaries. However, the tractions calculated across the interfaces between differently
oriented layers are discontinuous due to different orientation of adjacent plies. Also,
traction-free boundary conditions associated with the finite-width laminate coupon
cannot be satisfied. In order to remedy these two defects and make the numerical
model more representative of the real situation, it was necessary to ensure interelement
as well as interlaminar continuities of tractions and the traction-free boundaryv
condition along the free-edge. To accomplish this, nodal point degrees of freedom must
include some components of stress and exclude normal gradients of displacement which
will  be different across interelement houndaries. This was implemented by
transforming the displacements and their normal gradients at each of the nodal points
of the Q-23 element to a mixed set of degrees of f{reedom which would be continuous
across interelement boundaries. These included both displacement and interlaminar
traction components. Appropriate displacement-stress relationships derived from the
constitutive laws were used. Yor this element, traction-free boundary condition could

be satisfied in a point-wise sense.
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The continuous traction Q-23 element still has cubie variation of displacement over
the element uand retains continuity of displacements across interelement as well as
interlaminar boundaries. The strains as well as stresses vary quadratically within each
subtriangle of the constituent LCCT-12 elements of the quadrilateral. However, certain
components of strain are not continuous across interelement boundaries but interelement
tractions are. This correctly allows for possible differences in orientation of adjcent
laminae. I adjacent layers have the same stressstrain relationships due to identical

orientation, stress continuity will imply strain continuity as well.

5.2 Derivation of Displacement-Stress Transformation

In the Q-23 element analysis, the” number of nodal deprees of freedom is different
for the corner nodal points and the midside nodes. For this reason, derivation of
transformation matrices for displacements and their gradients at the corners of the
LCCT-12 element, and for normal ;radients of displacement at the midside nodes on the

element bhoundaries, is discussed separately in the following sections.

5.2.1 Corner Nodes
The strain-stress relationship for an orthotropic material expressed in the x-v 7
coordinate system is

€=$ 0 ijF12,.6 (81)

t 1)

or in matrix form
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E\ gll Sl? Sl.\ 0 0 Sl(. 0\.
e\ S12 S2.2 g:l 0 Y ‘.‘(: G\'
€, $;5,5, 0 058 o
= N - = ) (82)
Vye 0 0 058,85 0],
‘yxz 0 0 0 ~45 SSS 0 T\z
yx_v glb §26 S.?b 0 0 §bb T\\

where S =~ are components of the compliance matrix for monoclinic materials which
have symmetry with vespect to x-v plane (Figure 2) and are defined as {43]

§| I=Sl ]mJ-H 281 58 )m:n"+SHnJ
2 [0 A

S,,=(8,, 45,728, =S, Jmn +s

g o
¢ ”~5“m +S33n

%2l

'mz[zs’ lm2—2522n2+(2512+Sm‘)(n2—m2)]mn

wil

_ a . 22, _4
,,=S,,n +(2812+5M‘)m n°+S$,,m

i

_ 2 2
2375, +5,;m

[72]

_ 2 2 2 2
26—[2S”n —2S,,m +(2Slz+Sbb)(m ~n")mn
337533

3‘)=2(Sl3—823)mn

w w

. 2 2
“—S“m +Sssn

1920}

“=—544mn+555mn
= S I 2
S.\_.\—S“n +S,.;m

S!'(,=4(Sl l+522_251 2—5"h)m"n"+566

where m=cosf’, n=sind’, and
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_ 1 _ Vs o Vs
5= L, ' S12—_] 22' 5=~ -
v, 1 . l/‘.‘
So :—#, S_M=._‘_, S =——=
2 o E, TR Ky, (84)
1 4 14 1
S, =— 13 S. =— 23 S.. =
3 * V32 * 933
! Eu E,, E,,
1 1 1
S =, Sﬂiz—_—’ S66=~—
4 G,y 77 Gy, G,

6" is angle of ply from global axis x to material axis 1, and E,. G, v, (G)k=123)
are  moduli  of elasticity, shear moduli, Poisson’s  ratios,  respectively, m  material
coordinates.

.

Replacing the strain components by their corresponding displucement gradients. for

small strain theory, and rearranging the constitutive relation, (82) becomes

u\ Sll SlZ Slb Sl3 Y Y X
vy S12 52255 523 O g,
u, _ Si6 526 Se6 936 0 O Tyy (85)
v, S13 553 83, 553 0 0o,
wy+vz 0O 0O 0 O S“4 Sds T
uz 0 Y 0 0 SdS 35 T.\r
or symbolically
€ D, D)o
l i - it 12 1 (8())
€2 D?_l 1)22 03
where
u w
X b4
{61}= Vol {ez}z wotv,
u, u,
(87)
lea o
X Z

{o t={o 1 do,l=7,,

T T
AV N7
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and

500 50 S S,, 00
[Dn]=§l2 gz: gj(,y “)1:]: _‘“ 00
'.lf, gl’b §¢,(, ,S_‘% 00 "
S13 823 Sy S35 00
D,0=l0 0 o} ID,)=[0 S, S,
0O 0 0 0 §45 S—“

To relate the interlaminar strain components {e,} 1o their corresponding interlaminar

stress components {0, {o)b was eliminated through o static condensation process.  This

vields
{e t=[S No ,} (89)
where
{e}={e,1-D, ] D] He ) (90)
[s1=D,,HD,,] D, 1D, ] (91)

The inverse of [D,,], namely, the compliance matrix in plane stress case, can be written

explicitly as

Qll 012 (—)lb
,])"'=1Q,.0,,Q,, (92)
C)ln 624, OM;

where
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- 4 " 2 2 4
()”=Q“.m +2(Q,,42Q, )m ' n"+Q,,n

Q,,=Q,, +sz—4QM)mzn2+Ql 2(m4+n4)

- 3 2 2
le=—mn3()22+m nQ, ,—mn(m°-n"XQ, ,+2Q, )

4 , ) (93)
Q,,=Q,,n +2Q,,+2Q,Jm"n"+Q,,m
Qsz—m3anz+mn3Q,,+mn(m2"n2x012+2066)

2 2 2232
Qe =(Q,,+Q,,2Q, )m"n"+Q (m"~n )
with
E, ) = L,
Qn ]—Vﬁlyl ’ (‘23_]"1/1,1/1,
WV 2V (94)
Q VIZI'Z.? Q (
,= , ).— L
12 1=y v, = TH

Substituting (92) into (91) and (90), (89) could be expressed as

Wz—Bxux—Bzvy‘B3u)’ 533—X O O UZ
wytv, =| 0 S Su|{Tya 99)
uz 0 S45 555 Xz

where
B,=S,,0,,+5,,Q,,5,,Q,, (96)
B,=5,,0,,+5,,0,,%5,.Q,, o7
B3=§l 101(‘+§3 3621,+§34.(_-)(.(\ o8

and
X=BS +BS,,+BS. (99)

The gradients of displacement appearing in the expression for interlaminar strains were
then written in terms of interlaminar stresses using (95), ie.

uz = S4ST)'z+SSSTu. (]00)

v, = (w\,+vl)—w\, =8,.7,,%5447,

—w, (101)

7
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w, = {(w I—Blu\—B‘,\' \,—Bju\ )+B|u_.}+H~‘\ . +Blu\
=(§3‘—X)O'z+B]ux+132vy+]33u-y (102)
Combining (100)-(102) with the rest of the displacement nodal degrees of freedom, u,
vV, W, u, v, w,, and noting that u =e, the applied strain loading, the generalized

displacement components at the corner nodes of the 1.CCT-12 element were related to a

mixed set of degrees of freedom as follows:

Y1 pooo oo o o o || 0
A 0100 0 0 0 0 0 A 0
I poro oo o o o |V 0
Yl oo 1 00 0 0o o v, 0
vol_looo o 10 0 0o o Yolal o (103)
wl P00 0 01 0 0 0 |\ 0
o| OO0 008 S, 0l o
v| lbooo 018,85, o || 0
’ g d1 7 Be
w| 000B,B, 0 0 05.-x | B
or symbolically
{r}=[GAr}+{R} (104)

B,. B, B, and X occurring in (103) have been defined by (96) through (99). Thus, at

each of the three corners in the [.CCT 12 element. we have three displacement
components u, v, w along with three inplane strain components, u,, Ve W, and three

interlaminar stress components 7, 7., O,

Xz




5.22 Mid-side Nodes

In order to have rtraction continuity across interelement as well as interlaminar
boundaries, it is mecessary that the three traction components calculated at the mid-side
nodes on the common boundary from two adjacent elements be the same. This was
accomplished by transforming the displacement normal gradients associated with each of
the mid-side nodes in the LCCT-12 element to three boundary traction components
through the following relationships.

Let », and »' be two righthinded Cartestun coordinate systems having the sume
origin.  Then the traction ~ector F. o oon the plane with normal direction N, has
components t, and t, in the two syvstems. The two components are related through the
following transformation [44]

t'l=1ijtj (108)
with

L=, (106)
where e, e; are unit vectors in the two coordinate systems. The traction vector can
also be expressed in terms of stress components, that is

=0 .n (107)
with

n)=cos(e,,?\') (108)
Substituting (107) into (105)

t,’_'la;tJ:],FkJ"k (109)

For the free-edge stress problem defined in a pseduo two-dimensional space [11]
the traction vector T at any point on the element surface can be decomposed into

three components, t. =123, in the x| coordinate system. Figure (7) shows these
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Figure 7:
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Components of Traction Vector Acting on an Arbitrary Plane N
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three traction components which indeed can be regarded as the out-of-plane shearing

stress o, the normal stress o and the in-plane sheuring stress .. ‘The relation

nn’

between x, and X' coordinates as shown in Figure (7) vields

1,,=1, 1,=0, 1,,=0
1,,=0, 1,,=m, 1,,=n (110)
1,,=0, 1,,=-n, 1,,=m
and
n, =0 n,=m. n =n 111)

where m=cos@, n=¢inf and 6 is the ungle between these 1wo coordinates.  Substtuting
& <

the above guantities into (109), we have

t'' =0 =m7_+n7 (1123
1 nN \y N2
v,=0 =m’c +2mn7_+n’c (113)
nn y yz z
o = 2— 2 -—
t,=0 =(m"-n )Tyz+mn(0'z cry) (114)

Here, for interlaminar stresses acting on the element boundary are nothing but the
traction field, o, o, ., o, expressed in (112)-(114) indeed represent the three traction
components as illustrated in Figure (7).

The stress-strain relationship for the orthotropic lamina expressed in the x-v-7

laminiate coordinate system is

U,\ —‘ll ‘:12 (—:13 v 0 Fltr ex
Uy _"‘12 722 (-:23 0 0 (—:26 €,
Uz — Cl.‘i CZJ C33 0 0 C36 ez (115)
Tyz 0 0 O ‘44 745 O ‘y_yz
T2 0 0 C, C, Yz
Ty €6 C Ty 0 0 Cy Yoy




w here '(’A‘” 15 the suftfness muatrin  for monochnic svmmetry  with respect to x-v  plane

and 18

where,

axis 1,

with

defined as {43)

C: ,=C, imJ+2((fl3+2(7M1)m2n2+(,‘,33n'1

_ e 2.2 . 4, 4

Cu-—(C“-Fsz 4(,%)m n +C (m"+n )
2 2
C,,=C,;m"+Cy;n

C,.=C, n*+2(C ,+2C, Im’n’+C, m"

KRS
( «‘»:( 34
] { !
C,==C, mn 0 mn—(C 420 antm -n ) f116)
C, :—(‘,,m’n+('l ,mn ‘+l(’l 420 mntm’—n")
( %:((‘I ‘—(,3“)mn
— 2.2
(.“—(,“m +(,S;n

,45—((/55—(,“)11m
. 2 2
Css—(’ssm +C, 0

CM’:‘—(Cl ,+C,,2C, 2)m“n“+(366(m’—n")”

“22

with m=cosf’, n=sinf’, again 6" is angle between the global axis X to material

and

C =(1—v2]1/32)13“ ¢ =(v“+v“v23)15“
11 A * 12 A

C LT L O L STL TRy
T A S A

¢ :“ Voo by ¢ e tr v,
33 A 237 A

(:44=(;23 > (:55::(] 13° (‘()(»_——G 12

AST=V oV, TV ¥y, ™V V72V, VoV

(112)(114) along with (115), gives
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mC m(C nC . nC. n(”

o s 26 ER RN ER)
nn
.?F 2= 25 2= 5 7~ =
o 4=mC, +07°C, m €, +n7C,;  2mnC 2mnC 2mn(’,
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Z
W
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(119) is the general relationship between traction components at the clement mid side
nodes and the corresponding displacement gradients. It is different for cach element
midside node.

In order to relate the displacement gradients at the mid-point to the mixed nodal
degrees of freedom at the two ends defining the element surface, let j and Kk denote
the first and second cyclic permutations of i=1,2,3 (ie. }2,3,1 and k=3,1,2), the
projected dimensions and the corresponding boundary length are defined as (see

Appendix A)

ulz‘vk_yl’ blzll-lL' ]:: v “1:‘+h::, (]2())

Also, if the outward normal is defined as positive (Figure §) the relation hetween

local and global Cartesian Coordinates is [42]

Sloafn TP (1)
n L|~-b —aj|z—z
J i 1 t )
Considering (121) and using chain rule of differentation, we have
' S n a b
u = 3_“) _gu s gudn A b (122)
Y43 oy 7, 95 9y on oy | IR I TS
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Figure 8: Local and Global Cartesian Coordinates
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os n b H
= _a_lL) :QU-___|+_8_U§_|______|U ——u (123)
143 a?. 3 aSl al an, 67. ]1 S+ 3 1_’ e

where v, (i=1,2,3) denotes the tangential derivatives of u at one of the mid-side
1+

nodes (Figure 9), which can be further interpolated from the displacements and their
gradients at the two ends of the corresponding element boundary, ie.

3 a b 3 a. b,
=——uy——u +—u +—u ——u_ +—u (124)
+3 2]1 1 41| Yoo 4l 21 k41 oy 41I “y,

3 - ! 1

S

Recalling (100). we have

u=S.7 +S .7 (1230
2t Ty

NS
1 ;

u =8 .7 45 (126)

.J\T‘\/k
Substituting (124), (125) and (126) into (122) and (1230, we can express u,, u, at euch

of the element mid-side nodes in terms of their corresponding normal derivatives u_, as

well as the mixed nodal degrees of freedom at the two ends defining the segment.

That is
2
3a a’ a 5 a 5
u =——u——u +—S 7. +-S 7
Yi+3 2],2 [ 4]'2 _v_l 41]2 58 \:',J 41;2 45 y/J
3a 112 ab _ ab _ b
+—u——u =S 7 48 7 ——u (127)
200 T a4 T g hob s
3b ab b b”
u = —u+4-—u ——S5 7 ——L§ 7
ot ot o Tt
SR D g, (128)
——u +——y ——S 7 —--L15 75 —~y
21’2 k 41'2 Yy 4],2 55 X2y 4112 45 Yo o] s

Following the same procedure and considering (103), the transformation equations for

Vi v, Wi, woat each of the element nmid side nodes are
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A : Numbering for Element Assembly

Q : Numbering for Mid-Point Transformation

Figure 9: Numbering of Nodal Points in LLCCT-12 Element
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(129)

(130)

(131)

(132)

normal

(133)

1. . 11 [}
T ] T
331 anz aibl i g x 413 b|
+—v ——=v ——=w +-—8 7 , \!
27 F a2 Ve g? e 42 o ar’ 44Ty 7T Vg
3b ab b’ b2§ b2g
v = —v+2yv +—Lw ——LS 7 ——LF§
I R I e T
3b H] bg b 1)1_ a
—— vty +—wn L5 7 -5 7 ——y
20T g T g e
3a o’ ab ab ab 3
W =——"-w'—-'—7\x +—’—'133u +—’—'B\ (S5 \
Y143 a0 1 ar’ Yy 47 Yy 41‘ N 41° ‘1 21‘ '
i + b'B +a‘b‘B "(s X) +a'b'B °
———W —B.u A —X)o, +—B e ——w
a7 o422 Pk g2 PR g e L e
1 1
3b, | b’ b’ b’
wz =—2\V+ l;\k ’———lz—B.‘u - B V -———(S _)\)U _—'—“
w3t o e a2t ap? £
ab b’ b’ b’ N a
+-ow ~——Bu ——B,v -—=(5, —Njo, ——=Be ——w,
art e et T e gt Y e IS
Substituting (127)-(132) nto (119), the relation hetween the surface traction components
at each of the element mid-side nodes and the corresponding  displacement
gradients is
, u
nx n
0'nn = [T1], Vn +[T2]l{1"}l+3+{T3}l
ns 1+3 !‘||+-’

where
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m €  +n C m , +n7C,

e 3~ D= 2=
(1l =] m'C, +mn"C, +2mn°C,,

37 kP 2=
m C, +mn ,,H2mn C

2 2 3~ o m 2 2 3
(C%-(_fzb)m n+(m n—n )(,45 (C23—{,32)m n+{m n—n )C“

44

(C,+C, Jmn |

2 2 3~
2m"nC, ,+m'nC,,+n°C,, (134)
(m“—mnz)(-’J;l»((_f‘‘—F“)mn2

T .
S LV O T R CU AN o SN VSN CI CU B R C ST S e S (135)
A ' ¥ t \‘ \I .‘I \.'5 NS N + ’ . \' ° . N T, .

—_—

—;?("'J‘mn"lil—]?("“‘m zl&ﬁm(_'“.
)= (f44nl"n'113]~%(mdf—‘n+m"‘n‘3(‘\‘)Hl+n1"(‘| :,+113'(‘."| N (136)
3Coim’n=mn B~ 1€, ~C, )m*nB, T, ,—C, Imn
‘with
m=_‘]’_:, n=_;‘;‘; (137)
'

and [T,} is the product of the transformation matrix shown in (119) with the

following matrix [TA]
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(138)

Rearranging (133), the displacement stress  transformatons for the normal  displacement

pradients at each of the mid side nodes i the TCCT 12 element an




u, o
N S e o (N G IR TS B VIR R ) (139)
T
n +3 ns 1+3
or symbolically,
{r},,=Mlr} +LI{r} | +{S} (140)
where
my=0r)’ (141)
B =~ ') (142)
(sh=—r 141 (143)

Here, [ll], denotes the transformation matrix which directly related the normal slope
quantities at the mid-point, i+3, to the corresponding surface traction components. [L]
can be regarded as the coupling matrix between the normal gradients and the mixed
degrees of freedom associated with the nodal points, j and K, at the two ends of the

boundary. {S}, is the local effect resulting from the applied uniform loading e,.

5.3 Finite Element Formulation
The discretized form of (73) can be rewritien as
M
0= Zl‘ Sa" KMo a1 D (142)
where [K™] is the element stiffness matrix, {F"} denotes the nodal force including the
loca] effect due to the uniform in-plane strain loading as shown in (80) for the
free-edge stress problem. {q™} is the set of generalized nodal displacement components

within the element m, and M denotes the total number of elements.
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In order to have both displacement and traction conunuity along interelement as
well as interlaminar boundaries, assuming (144) is based on continuous strain cubic
displacement interpolation as in LCCT-12 described in 4.3.2, the displacement-stress
transformation matrices derived in the previous section were imposed on the generalized
degrees of freedom. Combining (104) and (140), the generalized displacement
components in the LOCCT-12 element were transformed to the mixed type degrees of

Freedom as tollows:
1 R , 1
lg =0 g e (1.45)
W here

iG] o 0o 0o o 0
o G o o o o
0O 0 6} o o0 o
™=y, 0, o ), o o (146)
o ] ), o M, o
), o {1}, o 0 [H],

P} =R LIRLIRLISEAS) s}, (147)

1
{q §={ul.vl,wl.u\, NOOOWo LU LV LW ULV WL VWU LYW
I R - - . .

,0'.000000'00}1(149)

. 9’. ‘“' . ‘T ‘T y QU. Al y » b .Y ’ ’

Y 3 \‘3 Y 3 \13 V[3 1,3 ll\b llll() ll\h ”\4 l)lld n\d n,\s nns 1155

Fach of the [L] matrices in (146) was divided into two parts to match the mixed
degrees of freedom in (149). In the finite element computation, this transformation

was implemented during the formation of each of the subtriangular element stiffness

matrin  and  Joad  vector  corresponding 1o the  1OCCT 12 element. Thus, due 1o

6Hs




appearance of displacement and interluminar traction components at the corners of the
triangle as well as traction components at the mid-side nodes, a cubic variation of
displacement and 4 quadratic variation of traction were ensured along element
boundary. More importantly, both fields are continuous across the common boundary

between two contiguous triangular elements. Substituting (145) into (144), we have

Q Z(— m m] +{I)'x} ) “\m] ([ % n]{qm “)m})_({q,m}'l[.rln]]+“)III}T){Fm})
mo |}
M )
DA RATRIINY TS TR TN TR INS Y R DHINS IS,
e |
_;_ l,m “\m] Pln m}l[I m] { m “)m} “ m,) (150)
or
- 1 T
_ Ay wm Trg=myy ,m ™ w=m m
Q—-E(z{q VKPR ™ g {RTHC™) (151)
where
[Kmlz[Tm]T [Km] [Tm] (152)
{ﬁm}=[.].m]T{Fm}_[Tm]T[Km]“)m} (153)
'”=%{p R =" 1 = constant (154)

Using global coordinates, (151) could be written as
Q= {q} [KKq}={gHRI+C | (155)

Taking the variation of (155) with respect to {q} yields the system generalized nodal

force-displacement equilibrium equations

[K)q'}={R} (156)
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The displacement as well as interluminar stress components were then obtained by

solving the resulting set of linear equations in the standard manner.

5.4 Calculation of Stresses

Solutions of the finite element system gives the three displacement components,
their tangential gradients along the element edges, rotation about the longitudinal axis
and interfaminar stress field at the corner nodes of the (Q-23 element, along with the
boundary traction components at the center point ol each of the Q23 element surfaces.
To retrieve the vrest of the displucement components at each corner node, the
transformation matrix used in (104) was reapplied to the calculated nodal point
solution. Having found the complete displacement gradients and hence strains, the
inplane stress components at the corner nodes of the Q-23 element could then be
computed using (115).

The interlaminar or interelement stress components at the mid-point of each
element boundary are merely the traction components directly produced by the solution
of the continuous traction Q-23 element provided a rectangular mesh is used in the
analvsis. For determining the rest of the stress components, the normal! displacement
gradients at mid-side nodes were recovered from the nodal point solution using (140).
Furthermore, the displacement und their gradients along the edge at the mid-point were
interpolated from the previously computed displacement components at the two ends of
the segment. Having transformed these displacement gradients from local to global
Cartesian coordinates, calculation of the remaining strain and stress components at the

mid-side of each of the element boundaries is direct.
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5.5 Boundary Conditions of a Quadrant of the Delamination
Specimen
For the free-edge delamination specimen. because of symmetries in the laminate.
only one quadrant of an x=constant plane was considered (Figure 2). Along the

boundary, either displacements or tractions are specified at each point.

5.5.1 Boundary Conditions Along Lines of Symmetry
Svmmetry of loading as well as geometrv about the mid-plane implies that the

displacement functions satisty the following condition

Uiv,-2)=U{v7) (187)
Vivez)=Viv.az) {158)
Wy, z)=—W(y,2) {(159)

Using chain rule of differentiation,

~U (y,-2)=U (y,2) (160)
~V (y,-2)=V (v.2) (161)
W_y( v,-Z)=—W y(y,z) (162)

Setting z=0 in (5.79)-(5.82), we have
Wi(v,0)=0 (163)
W (v 0=U (y0)=V (v =0 (164)
From (5.84), v, (y,0)=y,(y,0)=0, and consequently, for the layered orthotropic material.
7 [ y,())=7yz( v,0)=0 (165)
Also

(W, =V Xy0)=0
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Invariance under a rotation of 180 degree about the z-axis through the center of the

specimen 1mplies

U(-y,2)=—Ul(y,2) (166)
V(-y,2)==V(v,2) (167)
W(-y,2)=W(y,z) (168)

(166) and (167) lead immediately to

L0,2)=\V(0,2)=0 (169)

For all 7 und consequentiv

U )=\ (0r)=0 (170)
By chain rule of differenuation, (166} vields

—Wy(-y,z)=Wy(_\',z) 171)
Hence, for y=0

W (02)=0 (172)
(170) and (172) imply y,(02)=y,(0,2)=0. Hence, for the layered orthotropic material,

sz(O,z)=7yz(O,z)=0 (173)
Also

(\\‘\_—\'I)(()_y_)zﬂ

Combining (163). (164). (165), (169). (172) and (173), along with L(0.0)=0 in order

to prevent rigid-body displacement of the laminate, the continuous traction finite
element model for a quadrant laminate under consideration should satisfy the following

conditions along lines of symmetry

L'((),())=U((),7,)=V(O,z)=W(y,0)=Wv(y,())=Wv((),z,)=() (174)

7 (v)=1 (vO)=1 (O2)=7 (02)=0 (175
% vz N/ v
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5.5.2 Traction-Free Boundary Conditions
The traction tree boundary conditions associated with one quadrant of the lanunated
specimen are

7 (v =7 (vD=0 (y,1D)=0 (176)

at the top surface, along with

o (B)=7_(Bz)=1_(Bz)=0 (177)
at  the dateral free edye Here 2B and 211 denate the total width and thickness
yespectively ol the liminated speaimen. Uang the continuous traction Q23 madel,

traction-free boundary conditions shown o (1760 can be adenticaiiy satistied  for nodal
points on the top surface.  However, due to the lack of dnplane stress components as
nodal degrees of freedom, only the last condition shown in (177) can be specified at
those element corner nodes along the lateral free-edge. To completely satisfy the
traction-free condition along the lateral free-edge, the following device was developed.

In order to enforce the remaining two inplane stress-free conditions in (177), it is
necessary to express these in terms of nodal point degrees of freedom. This results in
a linear relationship between the degrees of treedom at nodal points on the free edge
The stress {-ee condition can be written explicitly as

a =0=C e +C, w +C, v +C u, (178)

S 127 e

T_\Z():(‘ e +C, W /+(_‘,4_x +C u {(179)

J6. 3 v [ TRERN

or symbohically

e,
o] _ [C12 Cos Cox G ¥, (180)
0 CH; C‘J(v C.‘.’(; ("‘ v\'

u

y
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where C . are components of the stifness matriy

equation.  the nplane  strain components  u, .,

interlaminar normal <train w,, by

vy _in 112 eo
u I, L] |w
3y 21 "22 z
W here
1 P
Ili—:(( r( i ((t( i )
b=« ¢ - ()
1 a 1 A [
l,,r(—)l( m(‘“—( ( 1-)
PP -
l:;_:‘( 2 Um0
and
2
0:C22C66—626

Substituting (102) into (181) for w, we

7

can further

delined by (116} Solving above
can be  ewpressed in terms  of
(181)

(1829

(183)

relate u, and v, to the

interlaminar normal stress component o, through the following linear relationships

U.=p,0,FPae,
V.o=q,0 4.8

W here

P,Z—;—[lgg(s‘,—m]
PF%“,,12232—1l212132+12281+121)
q,=1(1, (8,,~X)]
q;%ul:l?ln\—l,113?131+|”n,+1,,)
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(184)

(185)

(186)

(187)

(188)

(189)




and

B=1-1,,B,—1 B, {(190)
Again, B, B, B, and X occurring in (186) through (190) have been defined by
(96)-(99). Thus, the variables associated with the nodal points of the free-edge in the
lateral continuous traction Q-23 element are no longer independent but related through
(184) and (185). Incorporating these linear relationships in the displacement-stress
transformations shown in (104) and (1400 For elements on the lateral boundary implies

7

satisfaction of the traction Iree boundary conditions (17700 The transformation becomes

u 100000 0 O ofju 0
A O1 0000 0 0 Ay O
W 001000 0 0 0 W 0
U»\‘ 000000 0 O P, Uy P.e,
Vol= 000000 0 0 q, vy +la.e, (191)
wl 1000001 0 _() 0w, 0
u, 00000 0SS, 0 T, 0
v, 00000-15,,5, 0 T 0
w, 000000 0 O r o, ¢,
where
r, =S,,~N+B,g,+B,p, (192)
r,=B+Bq,+Bp, (193)




SECTION VI
ANALYSIS OF FREE-EDGE DELAMINATION IN
LAMINATE COMPOSITE SPECIMENS

6.1 Introduction

Continuous traction finite element formulation developed in the previous section
was applied to obtain an approximation to displacement as well as stress fields in a
free-edge delamination specimen. The analysis consisted of two parts. The first
consisted of solving four-ply symmetric laminates. The purpose was to examine the
credibility of the continuous traction finite element model by comparing the numerical
solutions with those from Paganos analysis based on a generalization of Reissner's
theory. At the same time, the deficiency in using the continuous strain free-edge
stress model described in Section 1V was examined. The second part consisted of
studying of edge delamination tendency in two classes of multi-ply laminates subjected
to longitudinal loading. For laminate specimens with stacking sequence of
((6/—0),/90, ,), displacement and stress fields calculated from the continuous traction
(Q-23 element were compared with those obtained using an overlay procedure with
constant strain elements [45] and with experimental observation [46]  For the
[(6/—0),/90], laminate specimens, the continuous traction finite element code was used
in conjunction with some well known anisotropic failure criteria [47-S0] to predict the
onset of transverse cracking and the onset of edge delamination in various laminate

specimens observed in experimental data [S1} The purpose was to evaluate the
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suitability of these tailure oriterta for apphivation to the f{ree-edge delamination problem.
Because ol symmetries n the laminates, only one quadrant (Figure 2) was considered

in each case.

6.2 Four-Ply Laminates
In  this section, analysis of two Jong symmetric laminate strips made of

praphite epoxy matertals, with fiber orentatons ol [45 35] and [0 90] under unitorm
mplane stram in the longitudimal divection s desertbed. Fhe relation between laminate
width and  thickness  was 2b-10h tollowing [8§] In the analysis. each ply was
wdealized as o homogeneous, elastic orthotiopie matenal. Yor comparison  purpose,  the
material properties assumed here following Puganos work [8]

E =20x1()6psi

o :

E,,=E..=2.1x10%psi

227 73T

-G =G = 6
G,,=G,,=G,,=0.85x10°psi

V|2=V13=V23=0'21

The subscripts 1, 2 and 3 correspond to the longitudinal transverse and thickness
directions respectivelv. A 144-element model as shown in Figure (10a) was used to
discretize a tyvpical x=copstant  plane.  Numerical results based on the continuous
traction Q 23 and continuous strain Q 23 elements were compared with Paganos [§]
analvtical solution.

Figures (11) through (23) illustrate comparisons for both stress and displacement
fields at specific locations for the angle-ply and cross-ply laminates using different
solution techniques. The value of N in these figures corresponds to the number of
sublayers vused in Paganos theory. Thus, N=6 indicates that each physical laver of

thickness h was maodeled by three sublavers each of thichness h’3, while N=2 denotes
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(a)

Figure 10

144-Lllement Mesh

(b)
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that each physical laver is treated as a uni [8]  Also. the calculated displacements and
stresses  were normalized by the applied uniform «train loading e which has been

taken as umit in the present analysis.

6.2.1 Angle-Ply Laminate

Figures (11) and (12) show the distribution of o, and 7 along the width of the
laminate at the center line of the top (45 degree) laver.  The results obtained using
the contmuous traction Q23 element ayreed gquite wetl with those of Paganos N 6
solutions across the entire width ot the lununate.

A comparison of  the shear siress (7 ) distmibution along  the interfuce of  the
45 -45 Javers (Fgure 13), indicated that the continuous traction 23 solution had
sharp rise toward the free-edge similar to Paganos solution with N=6. Satisfuctory
agreement was observed between these two solutions for stress across the width except
at the free-edge boundary where continuous traction Q-23 somewhat underestimated the
singular stress. Figure (14) shows the through-thickness stress distribution of 7,
calculated from both rontinuous strain and continuous traction Q-23 elements at the
free-edge of the laminate. Very close agreement was generally observed between these
two solutions throughout the thickness.  Also. at the interface of the 4545 luvers.
conunuity of the interlaminar shear stress was ensured for both cases.  This is betiuse
of the rotational symmetry about zaxis in the particular angle-ply laminate considered.
The singular behavior of 7

which 1s highly localized at the interface between 45°-45

.
layers, is noticeable. The distribution of o, along the interface between 45° and -45"
plies, which was not indicated in 8], will be discussed in the next section.

For the axial displacement distribution across the width of the top surface,

continuous traction -23 results compared well with Paganos N-6 solution (Fipure 15).
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@ CONTINUOUS TRACTION
——PAGANO (N=6)

25

3.

3.00
P

75

© 2.

X-STRESS/e.x 107°° (PSI)
2.50

2.25

1

.00

“b. 00 oféo 0. 40 6150 oieo 1
DISTANCE FROM CENTER LINE Y/B

Figure 11: Distribution of X-stress Along Center of Top lLaver (45 degree)

.00

77




® CONTINUOUS TRACTION
— PAGANO (N=6)

o
wn
o %
9V}
DS S -
wn
o
L3
Oo]
1%
]
)]
~NOo
W
(¥
Ll
10 88
—
(9]
o
m
X
o
o . . B
- : . : ‘P
%00 0. 20 0.40 0. 60 0. 80 .00
DISTANCE FROM CENTER LINE Y/B
Figure 12: Distribution of NY-stress Along Center of Top Laver (45 degree)

78




2'50

@ CONTINUOUS TRACTION
— PAGANDO (N=6)

00
f

2.

S0

1
1

1.

{

—XZ—STRESOSD/fox 10°° (PSI)

0.50

.00

. 00

Frgure 13:

. D= T f
0.20 0.40 0.60 0.80 1
DISTANCE FROM CENTER LINE Y/B

Distribution of XZ-stress Along 45/-4S Interface

.00

79




00

@ CONTINUGUS TRACTION
A CONTINUBUS STRAIN

2.
1

1.50

1

1.00

J

0.50

ap

0.00

-2.50

DISTANCE FROM THE CENTER LINE Z/H

Figure 14:

i
-2.00

~1.50 ~1.00 ~0.50

XZ-STRESS/€x107% PSI1)

0.00

Through-Thichness Distribution of XZ-stress at the Free-Ldge of

[45/-45]s laminate

80




¢ CONTINUOUS TRACTIGN
—- PAGANO (N=6)

o
o
o :
&} .
Wele!
1\0(0
SR
o
~N
T
Q¥
N
—r
DD
!
o
o
(3'-
o
o :
P—0—6-0—00-0 N B i T
S’ 00 0.20 0.40 0.60 0.80 1.00
BISTANCE FROM CENTER LINE Y/B
Figure 15: Axial Iisplacement Across Top Surface ol [45/’—45]sl,aminate

§1




Figure (16) shows the through-thickness distribution of axial  displacement based on
continuous strain as well as continuous traction Q-23 c¢lements at the free-edge of the

laminate.  Again, these two solutions matched well throughout.

622 Cross-Ply Laminate

Distribution of o, along the width on the central plane of the [0/90] lamina:-.
shown in Figure (17) indicates o sharp rise near the fiee-edye boundary.  Solutioos
obtained from the continuous truction Q23 element nearly coincided with Paganos N 6
solutioit over the entire width of the faminate,

Figure (18) <hows the variation of o, along the interface between the O and Yo
plies.  Due to the presence of the disconunuity in elastic © -ties, a singular stress
behavior would be expuocied at the free-edge. (On the o .ary, result {rom the
continuous traction Q-23 element had a steeper gradient than that of Pagano’s theoryv.
Apparently, one possible reason for this discrepancy is that, in Pagano’s analysis, each
physical layer could be modeled by at most three sub-lavers. However, in the finite
element analysis, the thickness was divided into eight elements. If a coarser
discretization were to be used, say 4x18, o, culculated from the continuou traction
Q-23 element would possibly agree quite well with Pagano's solution at the free edpe
interface.  Figure (19) shows the influence of through the thickness refinement of
mesh on o. lFigure (20) shows through the thickness distribution of o, at the
free-edge of the laminate. In 2 vicinmity of the interfuce, the continuous traction
Q-23 element, enforcing continuityv of o, at the interface between differently oriented
layers, gave a stress distribution quite different from that given by the continuous
strain Q-23 analysis.  Awav ,.om the interface the two sets of results were close.

Also, the interlaminar stress o, was observed to have a maximum value in the interior
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of the 90 deg laver closer w the interfuce with the top laver. lowever, in both cases.
the soluuions displaved oscillatory patterns near the interfuce. This could be due to the
finite element mesh uscd being not fine enough to approximate the steeply varying
stresses associated with abrupt change of material properties.

Values of 7,, along the interface between the [0/90) lavers, calculated frem the
continuous traction Q-23 element (Figure 21). showed satisfactory agreement with those
calculated by Pagano.  This is because the continuous traction Q-23 element exactly
satisfies the traction-tree boundary condition similar to Pagano’s theorv.  However, un
oscillatory error was observed near the free edge.  Apparently. further mesh relmement
along the y-direction is required near the free-edge in order to approximate the singuiar
stress behavior. [Iigure (22) displays through-the-thickness stress distribution of 7,
calculated from both continuous strain and continuous traction Q-23 elements at the
free-edge of the laminate.  Apparently, satisfaction of the traction-free boundary
condition associated with the continuous traction (-23 element represents an
improvement over the continuous strain Q-23 element.

Comparative results for the variation of trans.erse displacement along the top
surface of the [0/90], laminate are shown in Figure (23). Excellent agreement was
observed between results using the continuous traction Q-23 element and Paganos \-2

solution.
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6.2.3 Effect of Traction-Free Edge on the Solutions

In order to investigate the effect of requiring the satisfaction of a traction-free
boundary condition on the finite element solutions, the continuous traction -23
element was employed with only the requirement that 7,=0 along the Ilateral
free-edge of the four-ply laminate specimens. In other words, the displacement
constraint conditions developed in (188) and (189) used to specify the in-plane
stress-free boundary conditions were not imposed in this model.  Tor convenience in the
following comparisons, this is designated as continuous traction (partial).

Figure (24) shows the distribution of 7 along the interface of the 45/-45 layers.
Solutions calculated from the continuous traction (partial) had a steeper gradient in the
vicinity of the free-edge than that of previous continuous traction Q-23 element. A
similar observation is made for the variation of o, at the interface of [0/90] laminate
(Figure 25). Thus, it is concluded that the nonimposition of the conditions
o,=0 and 7,=0 would overestimate the magnitudes of the interlaminar stresses on the
interface near the free-edge. However, the nonsatisfaction of these two traction-free
boundary conditions had no significant effect on the displacement field in the laminate
specimens.  Figure (26) shows the solutions, for axial displacement distribution across
the width of the top surface in the [45:-45] laminate, obtained from the continuous
traction {partial) and from the continuous traction ()-23 element which satisfies all

traction free conditions at the free-edge.
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62.4 Effect of Mesh Refinement

The analysis of the four-ply laminate specimens was originally carried out by
using the continuous traction Q-23 element with a uniform 80-element model as shown
in Figure (27). However, for reliability of results, the finite element mesh must be
refined in regions of steeply varying stresses. This results in the present analysis
using the 144-element model which indeed was obtained by dividing the two elements
closest to the free-edge in the 80-element model into 10 elements along the v-direcrion.
To study the effect of mesh refinement on the continuous traction finite element
solutions, comparisons were made for the stress distributions in the four plv laminate
specimens between the uniform 80-element and the locally refined 144-element madels.

Figure (28) shows the distribution of 7_ at the interface of [45/-45] laminate
based on the 144-element model. A steeper gradient of 7 was observed on the
boundary as compared with the result using 80O-element model. A comparison of 0O,
distribution along the interface of the 45/-45 layers, indicates that the 144-element
model had a compressive finite maximum value at the free-edge rather than a tensile
quantity from the 80-element model (Figure 29). This indeed has demonstrated the
inappropriate sign of o, shown in Figure (1) based on the perturbation technique as
well as finite difference method. Yor wvariation of o, along the interface of [0/90]
laminate, Figure (30) indicates that a singular stress behavior was properly reproduced
by the 144-element model and did not show well in the results based on the
80-element mesh.

Use of 144-element model might still be insufficient to approximate the singular
stress behavior. One example is the 7, distribution, which had an oscillatory pattern

near the free-edge along the interface of [0/90] laminate, as mentioned before. To
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Figure 27: 80-Element Model
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overcome this, a more relined mesh (208-element maodel) obtiined by {urther dividing
the two elements closest to the f{ree-edge in the 144-c¢lement model into 10 elements,
was used in the analysis.  Along with the results calculated from §0- and 144-element
models respectively, Figure (31) indicated the improvement of the 7,, distribution along
0/90 interface over the boundary layer region as more refined elements were used near
the free-edge. llowever, regardless of mesh patterns used, there was an oscillatory
error in 7. in the two elements next to the [ree-edye.

Figure (32) shows through: the-thickness distributions of 0 at the frec-edge o
[090]  laminate based on  the 144-element model but  with finer mesh nemr  the
interfuce (Figure 10b) and its refinement (288-element model) in the thickness direction.
It is observed that the oscillatory error near the interface was reduced by using the
refined 144-element model and was nearly disappeared under more refinement over the
laminate thickness. Meanwhile, the maximum value of ¢, within the 90-degree laver

was moving closer to the 0/90 interface.
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6.3 Free-Edge Delamination in Multi-Ply Laminate Specimens
Analysis ol the four-ply laminate specimens described in the previous section
demonstrated some validity of using the proposed finite element procedures in solving
free-edge effect problems. Both continuous strain and continuous traction Q-23 elements
had similar prediction on the displacements and inplane stress distributions, which also
compared well with Pagano's analvtical solutions. However, discrepancy between
continuous strain and  continuous  traction finite element models was apparent for the
interlaminar stresses near laminate interfaces between differentlv oriented lavers or near
the traction-free boundary. Due to the fact that stress continuity across interlaminar
boundary as well as traction-free boundary condition are exactly satsfied n the
continuous traction Q-23 element, solutions obtained from this approach were expected
1o bhe more reliable than those from the continuous strain Q-23 element. In this
section, application of the continuous traction (-23 element to investigate the free-edge

effect as well as initiation of edge delamination in the multi-ply laminates is described.

6.3.1 Analysis of [(9/—9)m/90,yz]sLaminates
FFour types of laminates with predetermined fiber orientations [46] were used in
the present investigation. These are

Type Stucking Sequence Width Ply thickness Plies

A [(49.8/-49.8)5/90]§ 1.0 in 000506 in 22
B l(3().8/—3().8)5/90]s 1.0 in  0.00508 in 22
C [(25.5/-25.5),/90], 1.0 in  0.00505 in 22

D [(47.9/-47.9), /90] 10in 000499 in 42

The material used in the study was AS$4/3501-6, graphite-epoxy, and the elastic

constants were [46)]
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I,,=19.26X10psi
I,,=1.32X10"psi
G,,=0.83x10"psi
v,,=0.35
All the specimens have been investigated both analytically and experimentally at
the AFWAIL/AFEDL [46]. The Delamination Moment CoefTicients (DMC) were derived
and used to evaluate quuntitatively the delaminuation tendency of the laminates. Also,
generalized constant strain element was applied 1o analyvze hall of the width of the
laminate specimens.  In the experimental aspect, various techniques including Transiyerse
Strain Gages, Crached Silver Ink Instrumentation and Acoustic Emission Instrumentation,

etc. were used to determine the onset of delamination and to validate the analytical

results.

6.3.1.1 Numerical Evaluation

A 154-element model shown in Figure 33(a) was used to discretize one quadrant
of a typical x=constant plane in the laminate specimen Types A, B, C, and a
294-element model (Figure 33(b)) was used for speicmen Type D. Each ply was
modeled by a single element through its thickness. Interlaminar stress field within
various laminate specimens for an applied longitudinal average stress of 100 pst were
computed.

Comparisons of o, distribution along the mid-plane of various multi-ply laminates,
(Figures 34-37) indicate that the continuous traction Q-23 solutions had sharp rise
toward the free-edge similar to constant strain element solutions [46]  Satisfactory
agreement was gererally observed between these two solutions for stresses in the

vicinity of the free-edge except on the boundary where the stress calculated using the
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(a) 154-Lement Model

(b) 294-Element Model

Figure 33: Finite Element Meshes
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Q-23 element was distinctly less than that from the constant strain  solution.
However, the o, values calculated from the constant strain element were extrapolated
from the interlaminar stresses at z=0 obtained by Lagrangian interpolation of the o,
values at the element centroids. This is unlike the continuous traction Q-23 solution
where o, at the free-edge was directly calculated as nodal degree of freedom and
would be expected to be more reliable.

Figures (38)-(41) show the through-the thickness stress distributions of o and 7
calculated from continuous traction Q) 23 element a1 the [ree-edge of various laminate
specimens. 1t is observed that for the same applied axial stress, specimen 1D had the
Jargest value of normal stress o, at the free-edge, followed by specimens A, B und (.
Figure (42) illustrates this. The slope discontinuity of o, at the interfaces of the
free-edge shown in Figures (38){41) was possibly attributed to the material as well as
geometrical discontinuities in that region. Figure (43) indicates that much smoother o,
distributions through the laminate thickness were recovered within the angle-ply
laminae at a small distance from the free-edge. In fact, with further refinement along
the free-edge. the solution of o, on the free-edge is even better. Figures (44)-(45)
show the solution for o at the free-edge and at v=0.495 for specimen A with each
edpe element bheing refined into four elements along v direction. Also, figure (46)
shows the functional dependence of longitudinal stress o as well as interluminar
normal stress o, on the fiber orientation, respectively, for the [(6/—0),/90L laminate
under the same applied loading. The ordinates of these curves are the respective
values of o, and o, at the intersection of the mid-plane and traction-free edge of the
laminate. Results obtained from the continuous traction (Q-23 element indicated that

both o, and o, attained their maxmmum values approximately in the fiber orientation
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0 = 30

The shear stress 7, distributions were similar for these specimens, and their
magnitudes are relatively smailer than the maximum normal stress o, However, the
existence of 7., evidently reflected a defect of the numerical model adopted in [46] in
which the delamination specimen was treated as an axially symmetric problem in
which 7, was inherently assumed to be zero throughout the laminate thickness. It
was noted that o, distrihution had o slope discontinuity  at  the mid plune surface
within the 90-degree layver. This does not appeur to be rveasonable for the present
symmetric Jaminate specimens. Presuming that this was associated with the use of a
single element through the thickness of 90-degree laver being insufficient to
accommodate the mismatch at the interface between angle-ply and cross-ply laminae, a
study was carried out refining the mesh near the midplane. Figure (47) shows the
dramatical improvement of o, distribution near the mid-plane surface of specimen A
as increasing number of elements was used in the discretization of 90-degree layer. At
the same time, the maximum value of O, in the interior of the transverse layer was
observed to move closer to the interface with the angle-ply layer. Again, if both the
90-degree layer and the free-edge elements were refined, the improvement of o. was
not only on the 90-degree layer but ulso on the entire laminate. Figures (48)-(49)
show this improvement.

Comparison of the interlaminar shear stress 7, at the center line of 90-degree
layer along the width of various laminate specimens are shown in Figures (50)-(53).
Solutions from both methods indicate that 7., approached finite maximum values in the
vicinity of free-edge yet the traction-free boundary condition could only be satisfied by

using the continuous traction Q-23 element. The maximum values of 7. from the
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two models were comparable.  The constant stramn trnangular element approsimation
departed significuntly from the Q-23 solution in the vicinity of the free-edge. This
could largely be due to the nonsatisfuction of the traction-free boundary condition.

Figures (54)(S7) illustrate through-the-thickness stress distribution of 7, along center

z
line of the second element from the free-edge for various laminate specimens. The
reason to choose this site for comparison was because of the singular stress behavior
being displaved in the finite element discretizavon for both methods (Igures 50-83),
A close agreement was generally observed between these two solutions. The continuous
traction Q-23 analvsis show that the masimum 7, occurred at the interface between
the negative angle-ply and the 90-degree lavers [or all the specimens.  ‘The constant
strain element does not have the capability to predict this. It is also noted that for

the same applied axial stress, specimen DD has th. largest value of 7_, followed by A,

yz?
B and C, similar to the observation for o,
Table (2) shows the values of interlaminar normal stress o, at the interface of

the free-edge for laminate specimens A, B, C and D based on constant strain element
and continuous traction Q-23 element, respectively. The ratios of the normal stresses
o, o the relatively minimal value among them are 231 : 1.32 : 10 : 247 for
constant  strain  element, and 2.12 : 1.33 : 1.0 : 239 for continuous traction -23
element. Thus, the normal stress ratios for specimens A, B. C and D, cuslculated from
these two finite element schemes are comparable with each other.

Figure (58) shows exaggerated views of the displacement fields based on the
continuous traction (Q-23 element in specimens A, B and C. Figure (59) shows the

distortion of Specimen . The maximum displacement in the y-direction calculated

from both constant strain element and conunuous traction Q-23 element shown in
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Table 2:

Comparisons of Delamination Tendency for Various Speimens

llote Ratio=

Zinin

134

( unit : psi)
Classification WSpecimen A B C D
------------------------------ k----———--.---------.---------\--------.
Value 107 .74 67 .65 51.12 126 .22
o, from Constant
Strain element
Ratio 2.11 1.32 1.00 2.47
___________________ _{--------——--—-—-—-___,_______-_._________r._--___-_
Value 82 07 51 54 38 .68 92 43
o, from Continuous
Stress Element
Ratio 212 1 33 1.00 L 2 39




(a) Undeformed Model of A, B and C laminates
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(b) Deformed Model of A lLaminate
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(¢c) Deformed Model of B lLaminate
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(d) Deformed Model of C Laminate
Figure 58:

Finite Element Models of A, B and C l.aminate Specimens
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(a) Undeformed Model of D laminate

(b) Deformed Model of D Laminate

Figure 59: Finite Element Models D Laminate Specimen

| - o
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Table (3), were found to be in reasonable agreement for all these specimens.  Also,
from these figures, 1t is observed that under the sume applied axial stress, specimens D
had the largest distortion near the {ree-edge, followed by laminates A, B and C in
descending order. In other words, specimen D had the greatest tendency for edge
delamination among the four specimens, and the delamination would set in at the
Jowest applied axtal stress.  This again  confirms the prediction based on the
interlamimar normal stress o which had the largest values for specimen D as shown
in Table (2). Based upon above analvsis, we conclude that both the distortions and
the values of normal stress o, near the free-edge of the specimens calculated from the
continuous  tracuon  Q-23 element are consistent with those of the constant strain

element [46] which is much more economical to implement.




Table 3: Comparisons of Maximum Transverse Delormation for Various Specimens

( 1077 in)
Classification Specimen A B c D
___________________ T i Y S T iy N
Value 0.1309 0.1032 0.0829 0.1935 .
Constant
Strain Element
Ratio 1.5789 1.2448 1.00 2.3337 .
Value 0 1171 0 0888 0.0704 0.1638
Continuous
Traction Element
L Ratio 1 66-1 1.2619 1.00 2.3274

llote : Ratio=

’
min




6.3.1.2 Analytical-Experimental Correlation

An experimental study was conducted at AFWAL/AFFDL [46] to validate the
analytical results. Part of the test results are summarized in Table (4), which gives
the specimen type, strains, and stresses for the initiation of edge delamination
determined by transverse gages, silver ink, acoustic emission and visual observation.
The table also contains average axial stress for initation of edge delamination
calculated from the continuous traction Q23 element. The average initial delamination
stresses  for lanunates A, B. and € were found to be 1920 233 and 264 (ksi)
respectively [45)  ‘The corresponding [finite element solutions were 15.883, 25.817 and
29935 (ksi).  To calculate these values, the nodal axial stresses within each 1.CCT-12
triangular element had to be recovered from the stresses calculated along the boundary
of Q-23 quadrilateral. The axial loading applied on each triangular element could then
be computed by integrating the nodal stress values over each triangular area. Having
assembled the element axial loading over the whole system, the average axial stress

was obtained by dividing the total axial loading by the total cross-sectional area.
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Table 4:

Experimental Results tor Various Laminate Specimens

140

Laminate Specimen A B C
Axial Strain
10 ¢ 6099 3300 2900
g ) AR AP OUp S R
Initial Matrix Cracking Stress
( ksi ) 15.5 21.7 25.1
Gages 20.4 23.7 221
Initial Silver Ini: 17 .2 24.6 24 9
Delamination Acoustic
Stresses Emission 19.2 23.2 26 .4
( ksi )
Visual 18.1 23.5 25.¢
Average Stress Calculated
from Continuous traction Q-23 15.883 25.817 29.935
element (ksi)




632 Delamination of [(8/-8)2/90]g Laminate
A sequence of tests had been conducted [51] to monitor the material damage in

[(07—9),/90), laminate specimens under incremental loading. The value of 6 were

5°, 15°, 25° 35° 45°. The material considered here was T300/5208 graphite epoxy

with the following elastic constants:

I, =22x10psi ‘

(;,2=(;33=(>.s1x10"pgi

u13=y33:().28
The thickness of the ten-ply laminate averaged around 0.06 inch with width equal to
1 inch. All these laminate specimens had also been analvzed [51] using the assumed
stress hybrid finite element model [52] in conjunction with the quadratic tensor
polynomial failure criterion [53] tc predict the onset of transverse cracking and
delamination. In the present study, continuous traction Q-23 element with a uniform
100 element-model shown in Figure (60) was used to analyze one quadrant of a
typical x=constant plane in the laminate specimens. The calculated stresses along the

traction-free edge were then substituted into the following failure criteria to determine

the possible sites for initiation of transverse cracks and delamination.
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6.3.2.1 Anisotropic Strength and Failure Criteria
With macroscopically homogeneous but orthotropic materials, development of a

strength theory has been frequently accomplished by extending one of the isotropic
analyses to account for anisotropy. Since strength theories are used primarily to
predict onset, rather than mode of failure, the macroscopic viewpoint will predominate.
It has been stated [53] that all the failure criteria are the degenerate cases of the
tensor polynomial failure criterion

Fo+l o0 +F,000 +.. 21 (194)
or, explicitly

b o +F,0,+F0,+2F 0 0,+2F 0,0 .+2), 0,0,

2 2, 3 2 2,
+Fllo*l+F220'2+I~3302+F4404+I‘5505+1 067

i
<

21 (195)

Here, o, are the stress tensor components in the material coordinates and F, F and F
etc. are the components of strength tensors, all components are referred to the material

principle axes. In (195), terms associated with o, O, and o, which are
F, F, and F, are taken to be zero since shear strengths are the same for positive and
negative shear stress. It is also assumed that there is no interaction between shear
stresses and normal stresses, thus F,, F,, F, etc. become zero.

The strength and failure criteria considered in the present study include the
maximum stress criterion, maximum strain criterion, Hoffman's criterion and the
Tsai-Wu criterion. The reason for choosing these criteria was not only their popularity

but also because they include unequal tensile and compressive failure strengths.
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Maximum stress criterion
Failure of material is assumed to occur i any one of the following condit:c s 18
satistied {47]

0'1>XT; 02>YT; 0'3>Z.r (196)
0'4>R; 0'5>S; 06>T '

where o,, 0, 0, are the normal stress components; o, O, O, are the shear stress
components: X, Y, Z, are the lamina normal strengths in the x, v, 7 directions
respectively: and R, So T are the shear strengths in the vz, xz and Ay planes,
respectinely, When o,. 0. o, are mpressive. thev should be compared with
N,. Y, and Z,. the normal strengths in compression in the x, v and z directions.
Reddy [54] stated that the maximum stress criterion could also be expressed in the
form of tensor polynomial criterion as

(o, =X Xo ,+X Xo,~Y X0 ,+Y Xo,~Z Xo ,+Z Xo ,—RXo +R)

(O'S—S)(0’5+S)(O'O—T)(0’6+T)=O (197)

Comparing (197) with (195) and ignoring those higher order terms, the strength tensors

are [54]
11 1 1 .11
l',——.--.—; Ig-'—;—".—, | P
N, N Y, Y. Z, 7.
' o= 1 i = 1 - 1
[N \]\( 22 YTY(‘ 33 ZTZ( “98)
. 1 . 1 1
F.=— F S=_;] =
44 Rz 53 Sz 66 TZ
p oo FF o FE L FF

and the remaining strength constants are zero.




Maximum strain criterion
Failure is assumed to occur if one of the following conditions is satisfied [48]

€l>‘\eT; ez>\q,; €3>Ze7

. (199)
e4>R(; €5>Sel €,> re

where €,, €, €, are the normal tensile strains in the x, y, z directions respectively;

€, €, €, are the shear strains in the vz, xz and Xy planes respectively; N, Y,,, Z

'fl’ (3N [N
are the tensile strain strengths in the xo v, 7 directions and R S. T, are the sheur
strain  strengths in the vz, a7z and Xy planes respectivelv.  Again. expressing  the
criterion in the form ol tensor polynomial (195),

(e, —\_, )(€l+\e( )(e;,—\'(.r)(€2+Y“f)(e_;—ZE.l.)(e_ﬁZ(( )(64—1\’()('64-%]{()

(e,~S Xe +S Xe —T Xe, +T )=0 (200)

Expressing strains in terms of stresses via the compliance matrix for orthotropic

materials, (200) can be expressed in the form of (195) and we have [54]

S S
F,=F+ L+ 25
2 S 3
22 33
S S
= T2 A A 23 1A
F,= 28 4+ 22
11 733
S S
Fo= At )
s, s,
- S\ S S ) an SIS A
R BVE/ESS EPILE S M TP S IE i FU T
XoXe Sy, YYeo Sy ZiZe Sy S22 T 5,55 ’
s S.. S S, S.S
Fo= o2 1y 223y2 L iz pAph Z23pApA_ 21272 phph
YiYe o NXe o Sy 24 S © Sy, S )
S S, S A S, S S,
Flmoet(22y L g2z 1 Zuphph Z2aptph Ziaiphys
TZZe S, NN S, Y Y 5, 51 TSS,, .




1 1 . 1
} .—.._7; }"’ = }) = ~
44 R‘ b Sz 66 l,
E =h 1 +§£ 1 51553 1
12 11 xr\c Szz YTYC S§3 ZTZ
s? S.S. S S
T G iy S N - B A Y QuEe 5157 TER Lot
2 5,,S,, 25,8, Sy 25,53 Sy 7
E :S_u_ 1 +Sn 1 +S|2g21 1
BTSN S, 220 s Y,
121 gyl 120 ) EA L G k. 12)]
2 5,55, b2 S8 S, TP 285,08,
Szz 1 523 1 S12513 1

S24 S, S, S..S
_1 S +1FAFA- 1Dn, DSy AR Y Gt EITS 12 )pApA (201)
2 S225‘33 2 §5,,S,, Sn =2 5,8 S,

Here, S, (i,j=1,2,3) are the components of the compliance matrix, and Fj, F}', F{ are

the expressions given for F, F, F; in the maximum stress criterion.

Hoffman's criterion

Hoffman's criterion [49] is a special case of the tensor polynomial criterion for the

following choice of the parameters F, and F:
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L1 1 _ 1 1 _1 1
l‘l—*.——"‘“—» "w-—:——?-; }‘_——Z—
Ny \( Yy c Z'l' 4
':“_\]\; ;}-’2_\(]\' ’F-ﬂzz]z
" C T C TC
1 1 1
F = F :_’,.;F =
44 R 85 g2 66 T2
1 1 1 1
F =it +_ L -1,
12 2 \T)\ e YTY(‘ ZTZC
F === v], + - .1, )

Tsai-Wu criteria

The Tsui-Wu criterion is given by

where

Here,

Fo+F oo 21
[ o

B IV Y ZZ,

it is noted that the maximum stress and maximum sStrain criteria

(202)

(203)

(204)

involved

several separate equations, and there was no allowance for interaction of the stresses or

failure modes.
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The Hoffman criterion and Tsai-Wu criterion, however, do provide for




intevaction, and the interaction 1s fixed. That is. these fuilure expressions are not
invariant with respect to coordinate svstem. As expressed in terms of quadratic tensor
polynomial shown in (202) and (204) respectively, the only difference between these

two criteria was on the determination of strength tensors F,, F; F,,.

6.3.2.2 Onset of Material Damage

Pach  laminate  spectimen  was  tested  individually in  an  electro-hvdraulic.
servo-controlled closed loop testing machine [51]. The strain and nominal stress at the
first sight ol transverse craching and onset of delamination are summarized in Table

(

fh

).

The measured strength (ksi) of 13005208 graphite epoxy are given by [50]

Longitudinal tension : X, = 210
Longitudinal compression : X¢e = 200
Transverse tension : Y, =10
Transverse compression : YC = 21
Shear in 1-2 plane : S =13

It is further assumed that Z,=Y,, Z.=Y. R=S and T=S/2. Substituting above
information into (198), (201), (202) and (209) to calculate F, and F,, the strength
tensor for any complex stress state can then be obtained and compared with the actual
stress tensor. lailure is assumed to occur when the magnitude of the actual stress
tensor exceeds that of the strenth tensor.
Transverse Cracking

Based on the stress field calculated from the continuous traction Q-23 element, the
four failure criteria discussed in 6.3.2.1 were applied to every point along the
traction-free edge for all five laminate specimens at the strain levels shown in Table

(5), respectively, when the first sight of transverse cracking was detected. The results
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Table 5: Test Results for [(1 @ )y ‘)()]s Jaminate

Transverse

cracking
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are shown m Vigures (61)(65) along with Chou's [50]  predictions.  Those points that
lie in the region where the actual stress-to-strength tensor ratio is greater than unity
represent  failure.  Due to the discrepancy of the calculated stress field based on
different numerical schemes, the prediction of the lamina failure surface from the same
failure criterion (such as Tsau-Wu theory) varied significantly through the laminate
free-edge.  An obvious failure phenomenon resulting from the transverse cracking
withm the 90-depree laver was detected based on the continuous traction Q-23 element
foroali the Tamimate speamens. At the sanie time, imtation of edge delamination at
the mterfaces between 6 and —€0 become apparent as the value of 6 increases. which
was notindicated according o Chou's analysis. However, the fact that transverse
cracks alwavs occurred prior 1o delamination in all cases 1s noticed, and this indeed
matches experimental observation [S1).  Here, it is noted that the magnitudes of
stress-to-strength ratios shown in these figures sometimes departed significantly from
unity particularly in the interior of transverse layer and near the interfaces. This
could possibly be due to the inaccurate insitu transverse strength data and the

inappropriate assumption of the interlaminar strengths.

Edge Delamination

Following the same procedure as in the prediction of transverse cracking, maximum
stress, maximum  strain, Hoftman and Tsai-Wu  criteria were applied to every point
along the free-edge of various laminate specimens at the respective strain level
correponding  to the onset of delamination. Yor illustration, failure surfaces predicted
from the continuous traction Q-23 element for 6=5° and 6=25° laminate specimens are
shown in Figures (66) and (67). In the case of 6=5", Figure (66) shows that

following the transverse cracks formed in the 90-degree laver, delaminations were

155




developed at the interfaces between 55 lavers.  Meanwhile, transverse cracks alse
extended to the angle-ply lavers under incremental lJoading.  The [fuct that all the
failure surfaces exceeded unity shown in Figure (67) might result from the inaccurate
material strength data. For the 6=25" laminate, however, transverse cracks were still
confined to the 90-degree layer as delamination propagated at the 25/-25 interfaces.
Based on these observations, we can infer that fiber orientations of the laminates with
the same stacking sequence bave plaved an mmpertant vole on the determination of
damige modes under incremental loosdimyg.

In general. the Hoffman theory had more conservative predictions than the others
on the imtiation of transverse craching within the 90-degree laver, and the maximum
strain  criterion  predicted conservatively on  the subsequent edge delamination at the
interfaces between angle-ply laminae. Since the materials were assumed linear elastic
in the analysis, the applied strain loading corresponds to the onset of transverse cracks
or delamination based on the continuous traction Q-23 model, and the failure criteria
would be expected to be lower than the experimental observation. However,
throughout the analysis, delamination was assumed to occur in a state of generalized
plane strain without the influence of transverse cracking. In reality, this is not the
case.  More work needs to he done to study the interrelationships between delamination
and other damage modes such as matrix cracking and fiber breakage. etc.  Also, many
practical composite svstems actuallv exhibit extensive nonlinear mechanical response in
shear and transverse to the reinforcement, resulting in nonlinear laminate mechanical
behavior. Extension of the present continous traction finite element procedure to
include nonlinear material behavior, along with careful determination of material
properties and strength data, mav lead to better estimation of initiation of various

damage modes under incremental loading.
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SECTION VI
DISCUSSION

The problem of free-edge delamination in composite laminate coupons subjected  to
uniform mplane extensien has been anvestivatads Before dedamimation can be predicred
Vi oaostress based Totlure ortterion. an o acctate <hiess calcatatin within the laminaie
particulariy near the anterfaces and traction bree beundary, s pecessary. However, the
stress Deld under this situation as bighiv complexy o nature. Beades, the anisotropy
and heterogeneity of the material syvstem. and presence of the traction-free boundary
makes the analvsis difficult.  lLiterature on this subjwrct was abundant but an effective
as well as rehable solution had not been found.

The present research effort has resulted in developement of a continuous strain
finite element model in plane elasucity bused on the compatible cubic interpolation
function proposed by Clough and Fehippa [40] in which the normal slope continuity
Was ensured across the interclement boundirv. Iivtending the continuous strain model
oo the analvas ol a0 pseudo two dimensional free edge detamination coupon  under
uniform extension, a continuous stramn tield atong both mplane and transverse directions
was obtained.  However, due to matertal anisotropy. the stresses along the interfaces
between differently oriented lavers were discontinuous. Also, traction-free boundary
was not satisfied.  The continuous strain model was used as the basis for the
developement of a continuous traction finite element procedure. Knowing the fact that

the displacement  field  within each  element s deseribed by nodal  displacement




components and their gradients, tooensure tractton continuity, o transtormation procedure
was developed 1o map the gradients normal v clement boundary to o mixed set of
degrees of  freedom through appropriate displacement-stress relationships.  For global
assembly, the nodal degrees of freedom of this element include interlaminar stress
components at the corner nodes, as well as traction components at the mid-side nodes
of each element.  This ensures continuitv  of displacement and traction along

mterelement  boundaries  as o well as aoress Janmnnate  interfaces  providing @ small

det-imation sitaation s considered. At the same ume. equilibrium condition s
maintamed  beraeen two aducent  celements (lavers), A osigniticant aspect of  this

displocement based  Formulation s that 1t allows traction free boundary conditions to he
specitied inoa point wise sense.

In the four-ply laminate analvsis, numerica! results calculated from the continuous
traction Q-23 element generally agreed well with Paganos analytical solutions [8]
although these two schemes were based upon quite different theories. For illustration,
Table (6) outlines the basic characteristics associated with each of these approaches.
I ne approximate solutions for stress components 7, and o, which play an important
role in delamination of composite laminates, were calculated using both approaches and
found 1o have similar distribution. The study alse reveuled that the pattern of mesh
relinement had sipmficant effect on the estimates of interlaminar stress field in the
vianity of tracuon-free edge or near the interface between two differently oriented
lavers. Here, it is essential to realize that the continuous traction finite element
procedure is only applicable to the Q-23 element and cannot be simplified to Q-15 and
Q-19 elements. This is because the continuity of traction across laminate interface

cannot bhe simplified in the absence of mid-side nodes at the interface between two
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Table 6: Compartson of Pagano's Theory and Continuous Traction Q-23 Element
liethod Pagano Continuous traction Q-23
Variational Reissner's variational { Minimum potential
principle principle energy principle

Type of formulation

Mixed

Displacement

Basis of field
equations

Plate theory

Elastic solid

Assumed 1nside each
laver (element)

ineratic relations
& Stress equilibriun

Finematic relations
& constitutive law

Along interlaminar

Continuous traction

Continucus displacerment

eguations

& interlaminar stresses

boundarzx & weilighted displacerment] & traction
Assumed stress Inplane---linear Quadratic
v.r.t. Z-axis Transverse---cubic

Unknowns in final Weighted displacements | Displacements

& interlaminar stresses

Solution technique

Direct solving
differential equations

Finite element method
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adjacent  Javers. In  compurison with  the  continuous  strain Q-23  element, the
introduction of the transtormation process in the Q 23 element makes the continuous
traction procedure more expensive. lHowever, the continuous traction (Q-23 element
significantly improves the reliability of the stress field solution because of the
interlaminar stress continuity at the interface between differently oriented fiber layers,
atlong with satisfaction of traction-free boundary condition along specimen edges.
Applicatton  to the  multi-plv Jaminate  specimens  with  stacking  sequence  of
[0 =) 90 ] further 1llustrated the potential of the continuous traction finite element
procedure in the analvsis o edee delomimation problem. Satsfactory agreement  was
venerally observed for intevlaminar stress distributions as well as laminate displacement
field between continuous traction Q-23 element and constant strain element solutions
[44] except that, in the vicinity of the free-edge, the constant strain element was
deficient due to nonsatisfaction of traction-free boundary condition (7y2=0) and the
assumption of (7,=0) imbedded in the axisvmmetric analysis. The results from the

continuous traction Q-23 element would be expected to be superior to the constint
strain element (conventional assumed displacement elements) for prediction of stress
field in the free-edge delamination specimens. () course the simple axisymmetric
model 1s economical to use.

Reparding  prediction  of  daumage initiation  in laminate composite  coupons,
[(6/—6),/90], under incremental loading, the continuous traction finite element procedure
along with some popular anisotropic failure criteria was found to be successful in
modelling some failure phenomena observed in the experiments. Basically, the laminate
specimens under analysis were assumed to be made of linear elastic brittle materials.

Thus. initiation of delamination directly led to catastrophic laminate failure regardless
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of the damage accumulation process.  Numerical experiment discussed in the last section
revealed that the Hoffman criterion had a more conservative prediction on the
initiation of transverse cracking within the 90-degree layer, and the maximum strain
criterion on the subsequent edge delamination between the angle-ply laminae interfaces.

In summary, we conclude that the proposed continuous traction finite element
scheme not only overcomes the drawback of deficient stress calculation arising in the
conventional assumed  displacement approach. but also provides a reliable as well as
ctiectine numerical  solution procedure with o wider range of  applicability o the
analvsis  of the  Ireewdge  delinunation  problem. Though  based on @ completely
different variational formulation, this model has shared the characteristic of continuous
displacement as  well as traction fields ucross laminate interface, Wwith Pagano’s
approximate theory derived from a mixed formulation. Though developed for
evaluation of stresses in composite laminates, the continuous traction procedure is also
applicable to analysis of layered media involving material interfaces where a
two-dimensional or pseudo two-dimensional represcntation is applicable. This would
include stresses in layered airfield and highway pavements, pressures on tunnel lining,

etc.
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Appendix A
DERIVATION OF COMPATIBLE CUBIC
INTERPOLATION FUNCTIONS

This appendin contains o summary ol Pehippa's {41.42] approach in deriving  the
cubic compatible interpolitions For in-plane displacement u in a more detailed Tormat.

In order to derive the cubic interpolation functions for the complete triangular
clement, three different coordinate systems, ie. triangular coordinate, local and global
Cartesian coordinates should be defined as illustrated in Figure (A.1). The geometry of
an arbitrary triangular element can be expressed in a Cartesian coordinate system by
its nodal coordinates or its projected dimensions as shown in Figure (A.2), or
alternately by its intrinsic dimensions as defined in Figure (A.3).

let ) and k denote the first and second cyclic permutations of i=1,2,3 (ie. =2.3,1

and k=3.1.2), the projected dimensions mayv be written as

a =\ —x : h=y -y (A.1)
‘ \ VTN TN

Also, the intrinsic dimensions may be defined in terms of the projected dimensions.

Referring to Figure (A.2), define

/\‘:_.i. (A.Q)
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A : total area

{= -‘} (i=1,2,3)

L+ +4=1

Figure A.1:

Iriangular. Local and Global Cartesian Coordinates
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mo=1—A (A.3)

(uuk+l) b))
d|—~-'—]——'—; (A.4)

1

The triangular coordinates §,. {,. ¢, of any point "P" in the triangle may be defined
either as the yatios of the areas A of the subtnangles subtended by the point to the

total arca A of the Ulangle. or as the ratios of the normal distances n, to the heigln

A n
=l =_! (AS)
él A }11

as shown in Figure (A1), It is noted that the triangular coordinates are related by
the constraming condition {,+{,+{,=1

With reference to Figure (2), the displacement interpolation functions for each
subelement (i) express the relationship between the displacement u”’ within the element

and the ten displacement components of its nodal pomts ' as follows

il 0, I )
u =i Hir' {A0)
For example, the nodal displacemer. vector for subelement 1 is
(1n1
{r'’} =tuu MU U (A7)

The corresponding ten «ubic interpolation functions expressed in triangular coordiates are
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gf(3—2§l)+hp ("glgjg‘
éf‘ TS »,~-;.'_,' [N =t 8L
G R O R P S
(320 )+60, L L,

b [ = = N gL "
° s gf(h"(”g]—h‘]‘ Lo+ A '—h'j")gléjzu A8
{32
&) =0 L)

& g0, )
RN

where the subscnipts correspond to the renembered nodes of the subelement, and { are
the local triangular coordinates of points in subtriangle 1. With this convention, the
interpolation functions for subelements 2 and 3 are the sume as (A.8) appropriately
permuting the subscripts and superscripts. It should be noted, however, that the nodal
displacements in (A.6) are identified by node numbers defined for the complete element
assemblv.

It the vector {F} of all nodal displacements of the complete element assembly s

written as the ordered <et

Y
Fbo={u.w u uLu o wuuouwou o tuuLu (A9
N hY ~ 3 1\4 5 l.(, [ 0 \”

ST PN SN L)
u =1{d tirt=lo o ] (A0)

173




where 1@} is similar o (A8). but expanded with S zeros to account for the nodal
displucements not associated  with subelement 1. und with appropriate arrangement of
terms.  The vectors {07} and {¢"} represent the nterpolation  functions for the
external and internal nodal displacements respectively.

Expressing the displacements in the other subelements similarly, the complete

svstem of displucements can he written as

I dl. e

U ' ¥

l u| N.l n'l

N P (A1)
3 . r

U ' d)“‘l | d)ll(.] s

(A.11) is an expression of the cubic displacement patterns in the three subelements.
The displacement of two adjicent subtriangles are identical along their common

boundary. The normal slope at any of these nodes (say 7 of subelement 1) is given

by
ll r
() =@l =)= (A.12)
gn " A
r\
o g b1 o gt
where by, bl respectively are values of {de)'-}. {d—g)‘—'—} at node 7 for subeiement 1,
n n

and n denotes the axis normal to the element boundary  To maintain internal slope
continuity, it is necessarv that 0)'=—0). where the negative sign results from the

convention that the posiuve normal 1s directed outwards.  lor the three points 7. 8, 9,
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e'+0 | [pl+nl v +n Y
' ' [y ‘v (8] 8] T O
0.+l = o 40! pZ +n ! - = 1o (A.13)
35, AL2) B, 3, ) [F o
O‘) +OQ bgc +b9c | b90+b9()
or symbolically
T
BB J{—1=0 BWEL
T

The values of 1 which will satisfy these compatibility  conditions are obtamed by
solving (A.14), ie.
r,=—B 'Br=Lr (A.15)

Substituting the slope continuity constraint of (A.15) into (A.11), the fully compatible

displucement field in the three subelements becomes

s T .
e e i
£ -“r'l "7\1 7“
U“ - d)l\, + ¢)(~ i. {r} = &)’hll {r} (A16)
Ly . e T
u ‘}} ”‘1 =43}
¢, | (¢

Explicit expressions of these functions for subelement 3 are

@ l‘ = £103=20 D+0pd § 8 AL, —p 42 =A 0 —3u L]
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‘i)u Am = {f(a3§2—a2{3)+(a3p3—al)§|{2§3
X

1.2
+—6-{3[3(2a 1—a3y3—a2)\2)§l+3(al—-a3,u3)§2+(—3al+2a3;43+a2)\2){3]

éu\.w) = {f(b2{3—b3§2)+(b,—b3113)( 1§2§3
¥

1,2 : "
+ ?)-[{}[3(—2h|+b3# 00 #3000 u =1 I, +(3b =20 ~b AL ]
A {3

&= 0320 460 0L A3 A DL AN = =30 L]

&)ux(s) = (;(a1{3—213{l)+(a2—a3)\3)§1§2{3

1,2 ) i
+ €§3[3(a3)\3—42)(|+3(a My FagN =200, +(3a,—a p —2a A )]

&)u\,”) = gg(b_acl—bng3)+(b3>‘3—b2)§|{3§3

1,2
+g§.‘[3(h]~b‘,\‘)gI+3(——b|;x'-—b}}\3+2b3)§3+(—3b3+bl,ul+2h3)\3)§‘]
RS 2 .
¢“‘ = 43004 ) 3N X A=, =A ) ]

= 13 430 4 —3(3y 4+ . ,
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5 3,

The above set of interpolants is applicable to all points lyving in subtriangle 3. Tlor
points lying in subtriangle 1 and 2, {®"}, {#”} can be written down by cyclic
permutation of all subscripts and superscripts in (A.17). All the svmbols on the right

side of (A.17) relate to the complete triangle.
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LIST OF SYMBOLS

A list of the most commonly used symbols and their general meaning follows.

Global dimensions of a triungle
Area of triangle

Area of subtriangle i

Material constants

Components of the stiffness matrix in the
global coordinate system

Components of the stiffness matrix in the

material coordinate system

Components of the compliance matrix in the
global coordinate system

Components of the compliaunce matrix in the

material coordinate system

Components of the transformed reduced

suffness matry

Components of the reduced stiffness matrix

Projection of a corner of a triangle over opposite side
Inversion of Ql;

Components ol the reduced material

complimee matrin

Young's moduh
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Cartesian components of the body force vector
Triangle heights

Lamina thickness

Elements of Stiffness matrix

Triangle side lengrhs

Normal to boundary

Linear operator or matrix of hinear operators
on a reglon R

Linear operator or matrix of linear operators
on the boundary of R

Domain of operator A
n-dimensional Luchidean space

Open connected region in "
Boundary of R

Complementary subset of §

Closure of R

Focal cartesian components of the unit

normal to a surface

Local cartestan components of the umt

tangenual 1o a surlace

Open connected subregion of R

Boundary of subregion R

Cartesian components of the siress tensor
Cartesiun components of the displacement vector

Curtesian components of the traction vector
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"

u

Tr

Y

G

Cartestan components of the prescribed

traction vector

Nronecker's delta

Cartesiun components of the isothermal

elasticity tensor

Interpolation functions
Assumed displacements in element m

Assumed peneralized nodal displacements at the
boundary ol element m

Assumed peneralized nodal displacements internal
W element m

N . . . L n
Vector of strains in element m deriving from u”
Stiffness matrix

J.oad vectors

Cartesian coordinates in 1

Poisson's ratio

Shear moduli

Components of infinitesimal or linear strain tensor
Natural coordinate

Rotation angle from global axis x
to material axis 1

Transformation matrix
Applied uniform strain loading

Displacement component in x-direction
Displacement component in y-direction

Displacement component in z-direction

180




£ < <

=)

Displacement function in x-direction

Displacement function in y-direction

Displacement function in z-direction

fiber orientation

Geometric parameters

Linear functional

Displacement-stress transformation matrix for corner node
Displucement-stress transformation matrix for mid-side node

Bilinear mapping on V XV,

Coordinate transformation tensor
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